Difficult integral #2

Calculus Level 4

0 1 x 3 2 + 1 d x = a π b c d \int_{0}^{\infty} \frac{1}{x^{\frac{3}{2}}+1} dx = \frac{a\pi}{b^{\frac{c}{d}}}

The equation above holds true for coprime positive integers a a , b b , c c , and d d .

What is the minimum possible value of a + b + c + d a+b+c+d ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Amal Hari
Dec 29, 2019

Lets start by substituting x = u \sqrt x =u and finding the antiderivative The integral becomes 2 u 1 + u 3 d u \displaystyle \int \frac{2u}{1+u^{3}} du

Note that ( 1 + u ) ( 1 u + u 2 ) = 1 + u 3 \left(1+u\right)\left(1-u+u^{2}\right)=1+u^{3} ,which gives the integral as 2 u ( 1 + u ) ( 1 u + u 2 ) d u \displaystyle \int \frac{2u}{\left(1+u\right)\left(1-u+u^{2}\right)} du

Now 1 1 u + u 2 1 1 + u = 2 u u 2 ( 1 + u ) ( 1 u + u 2 ) = 2 u ( 1 + u ) ( 1 u + u 2 ) u 2 ( 1 + u ) ( 1 u + u 2 ) = 2 u 1 + u 3 u 2 1 + u 3 \displaystyle\frac{1}{1-u+u^{2}}-\frac{1}{1+u} = \frac{2u-u^{2}}{\left(1+u\right)\left(1-u+u^{2}\right)} =\frac{2u}{\left(1+u\right)\left(1-u+u^{2}\right)}-\frac{u^{2}}{\left(1+u\right)\left(1-u+u^{2}\right)} =\frac{2u}{1+u^{3}} -\frac{u^{2}}{1+u^{3}}

We have 1 1 u + u 2 1 1 + u = 2 u 1 + u 3 u 2 1 + u 3 \displaystyle\frac{1}{1-u+u^{2}}-\frac{1}{1+u} =\frac{2u}{1+u^{3}} -\frac{u^{2}}{1+u^{3}}

1 1 u + u 2 1 1 + u + u 2 1 + u 3 = 2 u 1 + u 3 \displaystyle\frac{1}{1-u+u^{2}}-\frac{1}{1+u}+\frac{u^{2}}{1+u^{3}} =\frac{2u}{1+u^{3}}

( 1 1 u + u 2 1 1 + u + u 2 1 + u 3 ) d u = 2 u 1 + u 3 d u \displaystyle\int \left( \frac{1}{1-u+u^{2}}-\frac{1}{1+u}+\frac{u^{2}}{1+u^{3}}\right) du =\int \frac{2u}{1+u^{3}} du

We can find anti-derivative for each one separately, the second and third ones are :

1 1 + u d u = ln ( 1 + u ) \displaystyle \int \frac{1}{1+u} du =\ln\left(1+u\right)

u 2 1 + u 3 d u = ln ( 1 + u 3 ) 3 \displaystyle \int \frac{u^{2}}{1+u^{3}} du =\frac{\ln\left(1+u^{3}\right)}{3}

Now 1 u + u 2 = ( u 1 2 ) 2 + 3 4 \displaystyle 1-u+u^{2} =\left(u-\frac{1}{2}\right)^{2} +\frac{3}{4}

1 1 u + u 2 = 1 ( u 1 2 ) 2 + 3 4 d u = 4 3 ( 1 + ( 2 u 1 3 ) 2 ) d u \displaystyle\int \frac{1}{1-u+u^{2}}=\displaystyle\int \frac{1}{\left(u-\frac{1}{2}\right)^{2} +\frac{3}{4}} du =\displaystyle \int\frac{4}{3\left( 1+\left(\frac{2u-1}{\sqrt3}\right)^{2}\right)} du , by substituting 2 u 1 3 = tan θ \frac{2u-1}{\sqrt3}=\tan \theta we can find the antiderivative.

The final form of the antiderivative after reverting to original variable and simplifying will be 2 arctan ( 2 x 1 3 ) 3 + ln ( ( 1 + x 3 2 ) 1 3 1 + x ) \displaystyle \frac{2 \arctan \left(\frac{2\sqrt x -1}{\sqrt3}\right)}{\sqrt3} +\ln\left(\frac{\left(1+ x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{1+\sqrt x}\right)

For the x = x=\infty limit we can factor out the x \sqrt x inside logarithm and in both limits expression inside logarithm evaluates to 1, which evaluates to 0. Evaluating 2 arctan ( 2 x 1 3 ) 3 \displaystyle \frac{2 \arctan \left(\frac{2\sqrt x -1}{\sqrt3}\right)}{\sqrt3} at limits will give π 3 + π 3 3 \displaystyle \frac{\pi}{\sqrt3} +\frac{\pi}{3\sqrt 3} which simplifies to 4 π 3 3 = 4 π 3 3 2 \frac{4\pi}{3\sqrt 3} =\displaystyle \frac{4\pi}{3^{\frac{3}{2}}}

Mark Hennings
Dec 29, 2019

The subsitution u = x 3 2 u = x^{\frac32} gives 0 1 x 3 2 + 1 d x = 2 3 0 u 1 3 u + 1 d u = 2 3 B ( 1 3 , 2 3 ) = 2 3 Γ ( 1 3 ) Γ ( 2 3 ) = 2 3 × π sin 1 3 π = 4 π 3 3 = 4 π 3 3 2 \begin{aligned} \int_0^\infty \frac{1}{x^{\frac32}+1}\,dx & = \; \tfrac23\int_0^\infty \frac{u^{-\frac13}}{u+1}\,du \; = \; \tfrac23B(\tfrac13,\tfrac23) \; = \; \tfrac23\Gamma(\tfrac13)\Gamma(\tfrac23) \; = \; \tfrac23 \times\frac{\pi}{\sin\tfrac13\pi} \; = \; \frac{4\pi}{3\sqrt{3}} \; = \; \frac{4\pi}{3^{\frac32}} \end{aligned} making the answer 4 + 3 + 3 + 2 = 12 4+3+3+2=\boxed{12} .

4 and 2 are not coprime though

Manpreet Singh - 1 year, 4 months ago

Log in to reply

True, but 4 , 3 , 3 , 2 4,3,3,2 are coprime, since they have no common factor other than ± 1 \pm1 . There is a difference between coprime and pairwise coprime .

Mark Hennings - 1 year, 4 months ago
Kelvin Hong
Jan 4, 2020

My solution is based on Contour integral. First, we do a substitution u = x u=\sqrt x such that the integral becomes

I = 0 1 x 3 / 2 + 1 d x = 0 2 u u 3 + 1 d u I=\int_0^\infty \dfrac{1}{x^{3/2}+1}dx=\int_0^\infty \dfrac{2u}{u^3+1}du

Let ρ \rho be a very small positive number and R R a very large positive number, ρ < R \rho< R . Let C C be the positively oriented contour consists of four parts: C = C 1 C 2 C 3 C 4 C=C_1\cup C_2\cup C_3\cup C_4 , where C 1 = { x R ρ x R } , C 2 = { R e i θ θ [ 0 , 2 π / 3 ] } , C 3 = { x e 2 π i / 3 ρ x R } , C 4 = { ρ e i θ θ [ 0 , 2 π / 3 ] } . C_1=\{x\in\mathbb R| \rho\leq x\leq R\}, C_2=\{Re^{i\theta}| \theta\in[0,2\pi/3]\}, C_3=\{xe^{2\pi i/3}| \rho\leq x\leq R\}, C_4=\{\rho e^{i\theta}| \theta\in[0,2\pi/3]\}.

Since the function 2 u / ( u 3 + 1 ) 2u/(u^3+1) only has one simple pole at u = e i π / 3 u=e^{i\pi/3} , by residue theorem, the contour integral is I C = C 2 u u 3 + 1 d u = 2 π i Res u = e π i / 3 2 u u 3 + 1 = 4 π 3 e π i / 6 . I_C=\int_C \dfrac{2u}{u^3+1}du=2\pi i\underset{u=e^{\pi i/3}}{\operatorname{Res}}\dfrac{2u}{u^3+1}=\dfrac{4\pi}{3}e^{\pi i/6}.

Taking ρ 0 + \rho \to 0^+ and R R\to \infty , the paths C 2 , C 4 C_2, C_4 converges to zero, hence I C = C 1 2 u d u u 3 + 1 C 3 2 u d u u 3 + 1 = 0 2 u d u u 3 + 1 0 2 e 2 π i / 3 u u 3 + 1 e 2 π i / 3 d u (Crucial role of C 3 here) = ( 1 e 4 π i / 3 ) I = 3 e π i / 6 I . \begin{aligned} I_C&=\int_{C_1}\dfrac{2udu}{u^3+1}-\int_{-C_3}\dfrac{2udu}{u^3+1}\\ &=\int_0^\infty \dfrac{2udu}{u^3+1}-\int_0^\infty \dfrac{2e^{2\pi i/3}u}{u^3+1}\cdot e^{2\pi i/3}du\text{ (Crucial role of }C_3\text{ here)}\\ &=(1-e^{4\pi i/3})I\\ &=\sqrt3 e^{\pi i/6}I.\end{aligned} Comparing two expression of I C I_C we see I = 4 π 3 3 . I=\boxed{\dfrac{4\pi }{3\sqrt 3}}.

Santhosh Talluri
Feb 17, 2020

$$ x=tan^{4/3} \theta$$ just makes it the same old cuberoot(tan) integral

Kaushik Karmakar - 1 year, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...