Difficult integral #3

Calculus Level 3

0 e x 2 5 d x = a π b \int_0^\infty e^{-x^\frac 25} dx = \frac {a\sqrt \pi}b

The equation above holds true for coprime positive integers a a and b b . What is a + b a+b ?


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 18, 2020

I = 0 e x 2 5 d x Let t = x 2 5 d t = 2 5 x 3 5 d x = 5 2 0 t 3 2 e t d t Gamma function Γ ( s ) = 0 t s 1 e t d t = 5 2 Γ ( 5 2 ) Note that Γ ( s + 1 ) = s Γ ( s ) = 5 2 3 2 Γ ( 3 2 ) = 5 2 3 2 1 2 Γ ( 1 2 ) and Γ ( 1 2 ) = π = 15 π 8 \begin{aligned} I & = \int_0^\infty e^{-x^\frac 25} dx & \small \blue{\text{Let }t = x^\frac 25 \implies dt = \frac 25 x^{-\frac 35} dx} \\ & = \frac 52 \int_0^\infty t^\frac 32 e^{-t} dt & \small \blue{\text{Gamma function }\Gamma (s) = \int_0^\infty t^{s-1}e^{-t} dt} \\ & = \frac 52 \Gamma \left(\frac 52\right) & \small \blue{\text{Note that }\Gamma (s+1) = s\Gamma(s)} \\ & = \frac 52 \cdot \frac 32 \Gamma \left(\frac 32\right) \\ & = \frac 52 \cdot \frac 32 \cdot \frac 12 \Gamma \left(\frac 12\right) & \small \blue{\text{and }\Gamma \left(\frac 12\right) = \sqrt \pi} \\ & = \frac {15\sqrt \pi}8 \end{aligned}

Therefore a + b = 15 + 8 = 23 a+b = 15+8 = \boxed{23} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...