Diffrentiate or integrate? I'm so confused

Calculus Level 4

Let f f be a real valued function defined on the interval ( 1 , 1 ) (-1,1) such that e x f ( x ) = 2 + 0 x t 4 + 1 d t \displaystyle { e }^{ -x }f\left( x \right) =2+\int _{ 0 }^{ x }{ \sqrt { { t }^{ 4 }+1 } \, dt } for all x ( 1 , 1 ) x\in(-1,1) and let f 1 f^{ -1 } be the inverse function of f f . Then find the value of 3 ( f 1 ) ( 2 ) 3{ ({ f }^{ -1 }) }^{ { ' } }\left( 2 \right) where ( ) (') represents d y d x \frac { dy }{ dx } .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Rajput
Jun 29, 2015

We have

e x f ( x ) = 2 + 0 x t 4 + 1 d t \displaystyle e^{-x}f(x) = 2 + \int\limits_0^x \sqrt{t^4 + 1} dt

At x = 0 , f ( x ) = 2 x=0 , f(x)=2 let u = g ( x ) u=g(x) be the inverse of y = f ( x ) y=f(x) . Therefore, f o g = x fog = x or (\f(u) = x )

which implies that, at x = 2 , u = g ( 2 ) = 0 x=2 , u=g(2)=0 .

In the given equation, replace x x with u u . Thus, e u f ( u ) = 2 + 0 u t 4 + 1 d t \displaystyle e^{-u}f(u) = 2 + \int\limits_0^u \sqrt{t^4 + 1} dt

e u x = 2 + 0 u t 4 + 1 d t \displaystyle e^{-u}x = 2 + \int\limits_0^u \sqrt{t^4 + 1} dt

Using lebnitz theorem, differentiating this equation, we get,

e u ( 1 x d u d x ) = d u d x u 4 + 1 \displaystyle e^{-u}(1-\frac{xdu}{dx}) = \frac{du}{dx}\sqrt{u^4 + 1}

we have to evaluate derivative of inverse of f ( x ) f(x) , i.e. , d u d x \frac{du}{dx}

d u d x = 1 e u u 4 + 1 + 2 \displaystyle \frac{du}{dx} = \frac{1}{e^u\sqrt{u^4 + 1} + 2}

( d u d x ) x = 2 = 1 1 0 + 1 + 2 \displaystyle (\frac{du}{dx})_{x=2} = \frac{1}{1\sqrt{0 + 1} + 2}

( d u d x ) x = 2 = 1 3 \displaystyle (\frac{du}{dx})_{x=2} = \frac{1}{3}

( f 1 ) ( 2 ) = 1 3 \displaystyle (f^{-1})'(2) = \frac{1}{3}

Thus, 3 ( f 1 ) ( 2 ) = 1 \boxed {3(f^{-1})'(2) = 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...