If tan ( x + y ) = 8 and tan ( x − y ) = 2 , then what is tan ( 2 x ) tan ( 2 y ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
{ tan ( x + y ) = 8 tan ( x − y ) = 2 ⟹ sin ( x + y ) = 3 8 , ⟹ sin ( x − y ) = 3 2 , cos ( x + y ) = 3 1 cos ( x − y ) = 3 1
sin ( x + y ) sin ( x − y ) 2 1 ( cos 2 y − cos 2 x ) cos 2 y − cos 2 x cos ( x + y ) cos ( x − y ) 2 1 ( cos 2 y + cos 2 x ) cos 2 y + cos 2 x = 3 8 ⋅ 3 2 = 3 3 4 = 3 3 8 = 3 1 ⋅ 3 1 = 3 3 1 = 3 3 2 Since sin A sin B = 2 1 ( cos ( A − B ) − cos ( A + B ) ) . . . ( 1 ) Since cos A cos B = 2 1 ( cos ( A − B ) + cos ( A + B ) ) . . . ( 2 )
⎩ ⎨ ⎧ ( 2 ) + ( 1 ) : cos 2 y = 2 7 5 ( 2 ) − ( 1 ) : cos 2 x = − 3 1 ⟹ sin 2 y = 2 7 2 , ⟹ sin 2 x = 3 2 , tan 2 y = 5 2 tan 2 x = − 2
Then we have:
tan 2 x tan 2 y = − 0 . 4
Problem Loading...
Note Loading...
Set Loading...
Consider the following identity
tan ( α ± β ) = 1 ∓ tan α tan β tan α ± tan β
So we have
tan ( 2 x ) = tan [ ( x + y ) + ( x − y ) ] = 1 − tan ( x + y ) tan ( x − y ) tan ( x + y ) + tan ( x − y ) = 1 − 2 2 ⋅ 2 2 2 + 2 = − 3 3 2 = − 2
tan ( 2 y ) = tan [ ( x + y ) − ( x − y ) ] = 1 + tan ( x + y ) tan ( x − y ) tan ( x + y ) − tan ( x − y ) = 1 + 2 2 ⋅ 2 2 2 − 2 = 5 2
Our answer is − 2 × 5 2 = − 5 2 = − 0 . 4 .