Dig the Range

Geometry Level 5

f ( x ) = ( cos 1 x 2 ) 2 + π sin 1 x 2 ( sin 1 x 2 ) 2 + π 2 12 ( x 2 + 6 x + 8 ) \large \displaystyle f(x)=\left(\cos^{-1}\dfrac{x}{2}\right)^2+\pi \sin^{-1}\dfrac{x}{2}-\left(\sin^{-1}\dfrac{x}{2}\right)^2+\dfrac{\pi^2}{12}(x^2+6 x+8)

If the range of f ( x ) f(x) above is [ a π 2 , b π 2 ] [a\pi^2,b \pi^2] , what is the value of 2 ( a + b ) 2(a+b) ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
May 12, 2016

Note:- Using definition of inverse functions domain of f(x) is [ 2 , 2 ] [-2,2] .

Use cos 1 x 2 = π 2 sin 1 x 2 \color{#D61F06}{\cos^{-1}\dfrac x2=\dfrac{\pi}2-\sin^{-1}\dfrac x2} and then expand using identity ( a b ) 2 = a 2 2 a b + b 2 (a-b)^2=a^2-2ab+b^2 so that most of the terms would cancel and equation would be reduced to a quadratic in x!! f ( x ) = π 2 4 + π 2 12 ( x 2 + 6 x + 8 ) ( x + 3 ) 2 1 f(x)=\dfrac{\pi^2}{4}+\dfrac{\pi^2}{12}\underbrace{(x^2+6x+8)}_{(x+3)^2-1} = π 2 6 + π 2 12 ( x + 3 ) 2 =\dfrac{\pi^2}{6}+\dfrac{\pi^2}{12}(x+3)^2

Using calculus we can see ( x + 3 ) 2 (x+3)^2 is increasing in [ 2 , 2 ] [-2,2] . Hence:-

b π 2 = f ( x ) max = f ( 2 ) = π 2 6 + 25 π 2 12 b\pi^2=f(x)_{\text{max}}=f(2)=\color{#D61F06}{\dfrac{\pi^2}6+\dfrac{25\pi^2}{12}}

a π 2 = f ( x ) min = f ( 2 ) = π 2 6 + π 2 12 a\pi^2=f(x)_{\text{min}}=f(-2)=\color{#20A900}{\dfrac{\pi^2}{6}+\dfrac{\pi^2}{12}}

Hence,

2 ( 1 6 + 25 12 + 1 6 + 1 12 ) = 5 2\left( \color{#D61F06}{\dfrac{1}6+\dfrac{25}{12}}+\color{#20A900}{\dfrac{1}{6}+\dfrac{1}{12}}\right)=\large\boxed 5

Exactly!! . I think the name of the problem should be dig the d o m a i n domain .

Aakash Khandelwal - 5 years, 1 month ago

nice solution .. +1

Sabhrant Sachan - 5 years, 1 month ago

Log in to reply

But even false!!!

Andreas Wendler - 5 years, 1 month ago

400 points problem ??

Rudraksh Sisodia - 4 years, 8 months ago

Log in to reply

Overrated.... !!

Rishabh Jain - 4 years, 8 months ago

@Rishabh Cool Hey guys, can you guys help me solve this REALLY REALLY HARD GEOMETRY QUESTION

Jason Chrysoprase - 5 years, 1 month ago
Chew-Seong Cheong
May 12, 2016

Let { α = sin 1 x 2 sin α = x 2 x = 2 sin α β = cos 1 x 2 cos β = x 2 \begin{cases} \alpha = \sin^{-1} \dfrac{x}{2} & \implies \sin \alpha = \dfrac{x}{2} & \implies x = 2 \sin \alpha \\ \beta = \cos^{-1} \dfrac{x}{2} & \implies \cos \beta = \dfrac{x}{2} \end{cases}

sin α = cos β = sin ( π 2 β ) α = π 2 β β = π 2 α \begin{aligned} \implies \sin \alpha & = \cos \beta \\ & = \sin \left(\frac{\pi}{2} - \beta \right) \\ \implies \alpha & = \frac{\pi}{2} - \beta \\ \beta & = \frac{\pi}{2} - \alpha \end{aligned}

Now consider,

f ( x ) = ( cos 1 x 2 ) 2 + π sin 1 x 2 ( sin 1 x 2 ) 2 + π 2 12 ( x 2 + 6 x + 8 ) = β 2 + π α α 2 + π 2 12 ( 4 sin 2 α + 12 sin α + 8 ) = ( π 2 α ) 2 + π α α 2 + π 2 3 ( sin 2 α + 3 sin α + 2 ) = π 2 4 π α + α 2 + π α α 2 + π 2 3 ( sin α + 1 ) ( sin α + 2 ) f ( x ) = π 2 4 + π 2 3 ( sin α + 1 ) ( sin α + 2 ) \begin{aligned} f(x) & = \left(\cos^{-1}\frac{x}{2}\right)^2+\pi \sin^{-1}\frac{x}{2}-\left(\sin^{-1}\frac{x}{2}\right)^2+\frac{\pi^2}{12}(x^2+6 x+8) \\ & = \beta^2 + \pi \alpha - \alpha^2 + \frac{\pi^2}{12} (4\sin^2 \alpha + 12\sin \alpha + 8) \\ & = \left(\frac{\pi}{2}-\alpha \right)^2 + \pi \alpha - \alpha^2 + \frac{\pi^2}{3} (\sin^2 \alpha + 3\sin \alpha + 2) \\ & = \frac{\pi ^2}{4}-\pi \alpha + \alpha^2 + \pi \alpha - \alpha^2 + \frac{\pi^2}{3} (\sin \alpha + 1)(\sin \alpha + 2) \\ \implies f(x) & = \frac{\pi ^2}{4} + \frac{\pi^2}{3} (\sin \alpha + 1)(\sin \alpha + 2) \end{aligned}

We note that f ( x ) f(x) is maximum and minimum when sin α \sin \alpha is maximum and minimum or sin α = 1 \sin \alpha = 1 and sin α = 1 \sin \alpha = -1 respectively. Therefore,

f m a x ( x ) = π 2 4 + π 2 3 ( 1 + 1 ) ( 1 + 2 ) = 9 π 2 4 f m i n ( x ) = π 2 4 + π 2 3 ( 1 + 1 ) ( 1 + 2 ) = π 2 4 \begin{aligned} f_{max}(x) & =\frac{\pi ^2}{4} + \frac{\pi^2}{3} (1 + 1)(1 + 2) = \frac{9\pi^2}{4} \\ f_{min}(x) & =\frac{\pi ^2}{4} + \frac{\pi^2}{3} (-1 + 1)(-1 + 2) = \frac{\pi^2}{4} \end{aligned}

2 ( a + b ) = 2 ( 9 4 + 1 4 ) = 5 \implies 2(a+b) = 2\left(\dfrac{9}{4} + \dfrac{1}{4}\right) = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...