Digamma duplication?

Calculus Level 5

exp ( 2 ψ ( 2 π ) ψ ( π ) ψ ( π + 1 2 ) ) = ? \exp\left(2\psi(2\pi)-\psi(\pi)-\psi \left (\pi+\dfrac12 \right)\right) = \, ?

Hint : Legendre duplication formula.

Notations :

  • exp ( x ) = e x \exp (x) = e^x denotes the exponential function.
  • ψ ( ) \psi(\cdot) denotes the digamma function .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 11, 2018

Legendre duplication formula for gamma function gives that:

Γ ( 2 x ) = 2 2 x 1 π Γ ( x ) Γ ( x + 1 2 ) Take natural logarithm both sides ln Γ ( 2 x ) = ln ( 2 2 x 1 ) 1 2 ln π + ln Γ ( x ) + ln Γ ( x + 1 2 ) Differentiate both sides w.r.t x 2 d d x ln Γ ( 2 x ) = 2 x ln 2 2 2 x 1 + d d x ln Γ ( x ) + d d x ln Γ ( x + 1 2 ) Note that ψ ( x ) = d d x ln Γ ( x ) 2 ψ ( 2 x ) = 2 ln 2 + ψ ( x ) + ψ ( x + 1 2 ) \begin{aligned} \Gamma (2x) & = \frac {2^{2x-1}}{\sqrt \pi} \Gamma (x) \Gamma \left(x + \frac 12\right) & \small \color{#3D99F6} \text{Take natural logarithm both sides} \\ \ln \Gamma (2x) & = \ln \left(2^{2x-1}\right) - \frac 12 \ln \pi + \ln \Gamma (x) + \ln \Gamma \left(x + \frac 12\right) & \small \color{#3D99F6} \text{Differentiate both sides w.r.t }x \\ 2 \frac d{dx} \ln \Gamma (2x) & = \frac {2^x \ln 2}{2^{2x-1}} + \frac d{dx} \ln \Gamma (x) + \frac d{dx} \ln \Gamma \left(x + \frac 12\right) & \small \color{#3D99F6} \text{Note that }\psi (x) = \frac d{dx} \ln \Gamma (x) \\ 2 \psi (2x) & =2\ln 2 + \psi (x) + \psi \left(x + \frac 12\right) \end{aligned}

exp ( 2 ψ ( 2 π ) ψ ( π ) ψ ( π + 1 2 ) ) = exp ( ln 4 ) = 4 \begin{aligned} \implies \exp \left(2 \psi (2\pi) - \psi (\pi) - \psi \left(\pi + \frac 12\right) \right) & = \exp \left(\ln 4 \right) = \boxed{4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...