Digit Reversal Triangle

Geometry Level 4

A right-angled triangle has integer side lengths less than 100. Reversing the digits in the hypotenuse length gives us the length of one of the other two sides. What is the length of the hypotenuse?

Source: 1995 Grade 12 Waterloo Math Contest - Question 8


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A 2 + ( 10 C 1 + C 2 ) 2 = ( 10 C 2 + C 1 ) 2 . H y > L e g C 2 > C 1 . A n d A 2 = 99 ( C 2 2 C 1 2 ) . S i n c e a l l a r e i n t e g e r s , A 2 = 3 3 11 11 = 3 3 2 . ( C 2 2 C 1 2 ) = 11. ( C 2 C 1 ) ( C 2 + C 1 ) = 1 11. C 2 C 1 = 1 , C 2 + C 1 = 11. S o H y . = 65. L o o k i n g u p i n P y t h a g o r a s T r i p l e l i s t , w i l l e a s i l y g i v e t h e s a m e a n s w e r . A^2+(10C_1+C_2)^2=(10C_2+C_1)^2.~~Hy>Leg~~\therefore~C_2>C_1.\\ And~A^2=99(C_2^2-C_1^2).\\ Since~all~are~integers,~~A^2=3*3*11*11=33^2.\\ \implies~(C_2^2-C_1^2)=11.~~~\therefore~(C_2-C_1)*(C_2+C_1)=1*11.\\ \implies~~C_2-C_1=1,~~~C_2+C_1=11.\\ So~Hy.=\Large~~\color{#D61F06}{65}. ~~\\ Looking~up~in~Pythagoras~ Triple~list,~~will~easily~give~the~same~answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...