Digit sum

Level pending

What is the digit sum of 1 3 + 2 3 + 3 3 + . . . + 99 8 3 + 99 9 3 + 100 0 3 ? 1^{3}+2^{3}+3^{3}+...+998^{3}+999^{3}+1000^{3}?


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Feb 9, 2014

This is an example of special series case where the series is in the form 1 3 + 2 3 + 3 + . . . + n 3 1^3+2^3+3^+...+n^3 . For the sum, we have an identity as follows----

1 3 + 2 3 + 3 3 + . . . . . + ( n 1 ) 3 + n 3 = ( 1 2 n ( n + 1 ) ) 2 1^3+2^3+3^3+.....+(n-1)^3+n^3=(\frac{1}{2}n(n+1))^2 . So, we have ----

1 3 + 2 3 + 3 3 + . . . . + 100 0 3 1^3+2^3+3^3+....+1000^3

= ( 1 2 × 1000 × 1001 ) 2 = ( 500500 ) 2 = ( 5005 ) 2 × ( 100 ) 2 = 25050025 × 10000 = 250500250000 =(\frac{1}{2}\times 1000\times 1001)^2 = (500500)^2=(5005)^2\times (100)^2=25050025\times 10000 = \boxed{250500250000}

Now, digit sum = 2 + 5 + 0 + 5 + 0 + 0 + 2 + 5 + 0 + 0 + 0 + 0 = 19 =2+5+0+5+0+0+2+5+0+0+0+0=\boxed{19}

Lorenc Bushi
Feb 1, 2014

We will use here this identity:

1 3 + 2 3 + 3 3 + . . . . . . . . + n 3 = ( n ( n + 1 ) 2 ) 2 1^3+2^3+3^3+........+n^3=(\dfrac{n(n+1)}{2})^2 .For our problem we have

1 3 + 2 3 + 3 3 + . . . . . . . . + 100 0 3 = ( 1000 1001 2 ) 2 = 250500250000 1^3+2^3+3^3+........+1000^3=(\dfrac{1000*1001}{2})^2=250500250000 , thus the digit sum is 2 + 5 + 5 + 2 + 5 = 19 2+5+5+2+5=\boxed{19}

why is the square?

Partho Kunda - 7 years, 4 months ago

I will give you the whole proof. First look at this pattern:

1 3 = 1 1^3=1

1 3 + 2 3 = ( 1 + 2 ) 2 = 9 1^3+2^3=(1+2)^2=9

1 3 + 2 3 + 3 3 = ( 1 + 2 + 3 ) 2 = 36 1^3+2^3+3^3=(1+2+3)^2=36

1 3 + 2 3 + 3 3 + 4 3 = ( 1 + 2 + 3 + 4 ) 2 = 100 1^3+2^3+3^3+4^3=(1+2+3+4)^2=100

1 3 + 2 3 + 4 3 + 5 3 = ( 1 + 2 + 3 + 4 + 5 ) 2 = 225 1^3+2^3+4^3+5^3=(1+2+3+4+5)^2=225 . Isn't math wonderful?Thus,from this we can conclude that the sum of the form:

1 3 + 2 3 + 3 3 + . . . . . . . + n 3 1^3+2^3+3^3+.......+n^3 will always be a square and it will be the square of 1 + 2 + 3 + . . . . . . . + n = n ( n + 1 ) 2 1+2+3+.......+n=\dfrac{n(n+1)}{2} .

Lorenc Bushi - 7 years, 4 months ago

Log in to reply

thanks!

Partho Kunda - 7 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...