Digits Modulo 100

Compute the last two digits of 7 9 79 79^{79} .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

21 solutions

Shefali Nayak
May 20, 2014

Think of the question like this: find 7 9 79 ( m o d 100 ) 79^{79} \pmod{100} . We know gcd ( 79 , 100 ) = 1 \gcd(79,100)=1 . Also, ϕ ( 100 ) = 100 ( 1 1 2 ) ( 1 1 5 ) = 40 \phi(100)=100(1-\frac {1}{2})(1-\frac {1}{5})=40 . Therefore, by Euler's Theorem, 7 9 40 1 ( m o d 100 ) 79^{40} \equiv 1 \pmod{100} . Applying this to the problem, 7 9 79 × 79 ( 7 9 40 ) 2 1 79^{79}\times 79 \equiv (79^{40})^{2} \equiv 1 . Let a b = 7 9 79 \overline{ab}=79^{79} , where b may be zero. Note that we can assume a one- or two-digit number because in mod 100 every number can be written as a positive integer less than 100. We now have 79 × a b 1 ( m o d 100 ) 79\times\overline{ab} \equiv 1 \pmod{100} . The tens digit of the LHS is 0 and the units digit is 1. Since the only digit that gives us a units digit of 1 when multiplied by 9 is 9 itself, we know that b=9. From there, we can test different different values of a starting with 0 and see which satisfies the equation. If you want to do it in a more orderly fashion, rewrite the equation as ( 70 + 9 ) ( 10 a + 9 ) 100 ( 7 a + 7 ) + 10 ( 9 a + 1 ) + 1 ( m o d 100 ) (70+9)(10a+9) \equiv 100(7a+7)+10(9a+1)+1 \pmod{100} and you find that the tens digit is 0 when a=1. Either way, you find that a=1 and b=9. Therefore, a b 7 9 79 19 ( m o d 100 ) \overline{ab} \equiv 79^{79} \equiv 19 \pmod{100} . The last 2 digits are 19.

Did the same:).

Shishir Shahi - 3 years, 11 months ago

Log in to reply

Did the same

Vimal Khetan - 1 year, 2 months ago

"The tens digit of the LHS is 0 and the units digit is 1." Why ??

Sarthak B - 4 months, 2 weeks ago
Kevin Sun
May 20, 2014

We wish to compute 7 9 79 ( m o d 100 ) 79^{79} \pmod{100} We use the Binomial Theorem. 7 9 79 = ( 80 1 ) 79 = i = 0 79 8 0 i ( 1 ) 79 i 79^{79} = (80-1)^{79} = \sum_{i=0}^{79} 80^i\cdot(-1)^{79-i} . All of these terms are divisible by 100 except for the last two. The last two are 79 80 1 19 ( m o d 100 ) 79\cdot 80 - 1 \equiv 19 \pmod{100} , so 7 9 79 = 19 ( m o d 100 ) 79^{79} = 19 \pmod{100} .

Wasn't the last two terms 80 ( 1 ) 78 + ( 1 ) 79 = 80 1 = 79 80(-1)^{78}+(-1)^{79}=80-1=79 ?

Ivander Jonathan - 6 years, 4 months ago

Log in to reply

don't forget the coefficient, nCr

Akhil Gandu - 3 years, 12 months ago

I also have same doubt

Shivansh Bajaj - 4 years, 3 months ago

C( 80, 1 ) =80 the binomial coefficient of last but one term. you are missing it.

Cuisinic salad - 2 years, 1 month ago
Jim Smith
May 20, 2014

Notice that, 7 9 79 ( 21 ) 79 ( m o d 100 ) 79^{79}\equiv(-21)^{79} \pmod {100} . And consider the following: ( 21 ) 1 21 ( m o d 100 ) ( 21 ) 2 41 ( m o d 100 ) ( 21 ) 3 61 ( m o d 100 ) ( 21 ) 4 81 ( m o d 100 ) ( 21 ) 5 1 ( m o d 100 ) ( 21 ) 6 21 ( m o d 100 ) ( 21 ) 7 41 ( m o d 100 ) ( 21 ) 8 61 ( m o d 100 ) ( 21 ) 9 81 ( m o d 100 ) ( 21 ) 10 1 ( m o d 100 ) \begin{aligned} (-21)^1&\equiv -21 &\pmod{100} \\ (-21)^2&\equiv 41 &\pmod{100} \\ (-21)^3&\equiv -61 &\pmod{100} \\ (-21)^4&\equiv 81 &\pmod{100} \\ (-21)^5&\equiv 1 &\pmod{100} \\ (-21)^6&\equiv21 &\pmod{100} \\ (-21)^7&\equiv -41& \pmod{100} \\ (-21)^8 &\equiv 61 &\pmod{100} \\ (-21)^9 &\equiv -81 &\pmod{100} \\ (-21)^{10}&\equiv 1 &\pmod{100} \\ \end{aligned}

We see that ( 21 ) n ( m o d 100 ) (-21)^n \pmod{100} has a period of 10. Thus, 7 9 7 9 ( 21 ) 7 9 ( 21 ) 9 81 19 ( m o d 100 ) 79^79\equiv(-21)^79\equiv(-21)^9\equiv-81\equiv 19 \pmod{100} . So, the last two digits are 19.

[LaTeX edits - Calvin]

Diego Roque
May 20, 2014

Computing the last 2 digits is equivalent to find 7 9 79 ( m o d 100 ) 79^{79} \pmod{100} . We know that 100 = 2 2 5 2 100=2^2\cdot 5^2 , so we can find the number ( m o d 4 ) \pmod{4} and ( m o d 25 ) \pmod{25} and we are done.

We know that ϕ ( 4 ) = 2 2 2 = 2 \phi{(4)}=2^2-2=2 , so 7 9 79 3 79 3 ( 3 39 ) 2 3 19 ( m o d 4 ) 79^{79}\equiv 3^{79}\equiv 3\cdot (3^{39})^2\equiv 3\equiv 19\pmod{4} . Also, ϕ ( 25 ) = 5 2 5 = 20 \phi{(25)}=5^2-5=20 so 7 9 79 4 79 ( 4 1 ) ( 4 4 ) 20 ( 4 1 ) 19 ( m o d 25 ) 79^{79}\equiv 4^{79}\equiv (4^{-1})\cdot (4^{4})^{20}\equiv (4^{-1})\equiv 19 \pmod{25} , as know that 4 19 = 76 1 ( m o d 25 ) 4\cdot 19=76\equiv 1\pmod{25} , thus 4 1 19 ( m o d 25 ) 4^{-1}\equiv 19\pmod{25} Then, 7 9 79 19 ( m o d 100 ) 79^{79}\equiv 19 \pmod{100} so 19 19 is the answer.

There are numerous ways to approach problems like this.

  1. Direct application of Euler's Theorem to reduce the exponent.

  2. Taking modulo arithmetic of the different prime powers and combining the result using the Chinese Remainder Theorem

  3. Using the Binomial Theorem for suitable values of ( a + b ) n (a+b)^n .

  4. Calculating the exact period, though this becomes tedious for large numbers.

Calvin Lin Staff - 7 years ago
Ziwei Lu
May 20, 2014

To look for the last 2 digits of 7 9 79 79^{79} , it is the same as looking for the result modulo 100. By Euler's Theorem, 7 9 40 1 ( m o d 100 ) 79^{40} \equiv 1 \pmod{100} , as g c d ( 79 , 100 ) = 1 gcd(79, 100) = 1 , and ϕ ( 100 ) = 40 \phi(100) = 40 .

Thus 7 9 80 1 ( m o d 100 ) 79^{80} \equiv 1 \pmod{100} , and 7 9 79 79^{79} modulo 100 is the inverse of 79 modulo 100. It's easy to see that 79 × 81 1 ( m o d 100 ) 79 \times 81 \equiv -1 \pmod{100} . So 7 9 79 81 ( m o d 100 ) 79^{79} \equiv -81 \pmod{100} , or 7 9 79 19 ( m o d 100 ) 79^{79} \equiv 19 \pmod{100} .

Mateus Bezrutchka
May 20, 2014

First of all, we know that compute the last 2 digits of 7 9 79 79^{79} in the decimal representation is the same as calculating 7 9 79 ( m o d 100 ) 79^{79}\pmod{100} , which is what we will do.

Is a well known fact that, for N N N\in\mathbb{N^{*}} , ϕ ( N ) = N ( 1 1 p 1 ) ( 1 1 p 2 ) ( 1 1 p k ) \phi(N)=N(1-\frac{1}{p_1})(1-\frac{1}{p_2})\dots (1-\frac{1}{p_k}) where the p i p_i are all the distinct prime factors of N N . So, since 100 = 2 2 5 2 100=2^{2}\cdot 5^{2} , we have ϕ ( 100 ) = 100 ( 1 1 2 ) ( 1 1 5 ) = 40 \phi(100)=100(1-\frac{1}{2})(1-\frac{1}{5})=40 , and then, since m d c ( 79 , 100 ) = 1 mdc(79,100)=1 , using Euler's Theorem we have 7 9 ϕ ( 100 ) 1 ( m o d 100 ) 7 9 40 1 ( m o d 100 ) 79^{\phi(100)}\equiv 1\pmod{100}\iff 79^{40}\equiv 1\pmod{100} 7 9 80 1 2 1 ( m o d 100 ) 7 9 79 79 1 ( m o d 100 ) \Longrightarrow 79^{80}\equiv 1^{2}\equiv 1\pmod{100}\Longrightarrow 79^{79}\cdot 79\equiv 1\pmod{100} 7 9 79 7 9 1 ( m o d 100 ) \Longrightarrow 79^{79}\equiv 79^{-1}\pmod{100} .

Then we need to calculate 7 9 1 ( m o d 100 ) 79^{-1}\pmod{100} , which can be done by applying the Extended Euclidean Algorithm:
We have the following equalities
100 = 79 × 1 + 21 21 = 100 79 100=79\times1+21\Rightarrow 21=100-79 79 = 21 × 3 + 16 16 = 79 21 × 3 79=21\times3+16\Rightarrow 16=79-21\times3 21 = 16 × 1 + 5 5 = 21 16 × 1 21=16\times1+5\Rightarrow 5=21-16\times1 16 = 5 × 3 + 1 1 = 16 5 × 3 16=5\times3+1\Rightarrow 1=16-5\times3
So, starting from the last equality and then successively using the RHS of the last equality in the previous line, we have
1 = 16 5 × 3 = 16 ( 21 16 ) × 3 = 16 × 4 21 × 3 = ( 79 21 × 3 ) × 4 21 × 3 = 79 × 4 21 × 15 = 79 × 4 ( 100 79 ) × 15 = 79 × 19 100 × 15 1=16-5\times3\\ =16-(21-16)\times3=16\times4-21\times3\\ =(79-21\times3)\times4-21\times3=79\times4-21\times15\\ =79\times4-(100-79)\times15=79\times19-100\times15



Thus 79 × 19 100 × 15 1 ( m o d 100 ) 79 × 19 1 ( m o d 100 ) 7 9 1 19 ( m o d 100 ) . 79\times19-100\times15\equiv 1\pmod{100}\iff \\ 79\times19\equiv 1\pmod{100}\iff 79^{-1}\equiv 19\pmod{100}.

Therefore, 7 9 79 7 9 1 19 ( m o d 100 ) 79^{79}\equiv 79^{-1}\equiv 19\pmod{100} and the answer is 19 .

Vickram Rajendran
May 20, 2014

The last two digits of a number N is just N mod 100, so the problem is really asking for:

79^{79} \equiv x \pmod 100.

Euler's theorem states that a^{\phi(m)} \equiv 1 \pmod m if m and a are relatively prime. Since 79 and 100 are relatively prime, Euler's theorem is applicable.

/phi(N) is the number of numbers less than N that are relatively prime to N, which can also be expressed as N(1-1/p 1)(1-1/p 2)...(1-1/p i) where p 1,p 2,... p i are the distinct prime factors of N.

For the case N = 100, we find \phi(100) = 100(1-1/5)(1-1/2) = 100(4/5)(1/2) = 40.

So we know that 79^{40} \equiv 1 \pmod 100. Using the modulo rule for multiplication: 79^{40} \times 79^{39} \equiv x \pmod 100

79^{39} \equiv x \pmod 100.

Note that 79 = 80 - 1, so really we are solving: (80 - 1)^{39} \equiv x \pmod 100.

Begin to expand (80 - 1)^{39} to obtain

(-1)^{39}+39 80 (-1)^{38} + {39 \choose 2}(80^{2}(-1)^{37} + ....

But wait! Since 10 is a factor of 80, every term in the above expression that can be factored by 80^2 can also be factored by 10^2, which is 100!

This way, we can mod out all but the first two terms. So our new equation is

(-1)^{39} + 39 \times 80*(-1)^{38} \equiv x \pmod 100.

-1 + 3120 \equiv x \pmod 100. Mod out the 100's from 3120 to obtain

20 - 1 \equiv x \pmod 100.

19 \equiv x \pmod 100.

Therefore, the last two digits of 79^{79} = 19.

Checkout for your LaTeX language...

Syed Hamza Khalid - 3 years, 6 months ago
Caj Cajurao
May 20, 2014

we get the last two digits of the ff: 79^1=79 79 79=41 41 79=39 39 79=81 81 79=99 99 79=21 21 79=59 59 79=61 61 79=19 19*79=01

and we will notice that the sequence will repeat after 10 multiplications. So we get 79th which is 19.

79=75+4 a number divided by 100 gives the numbers last 2 digits 79^79=((3 25)+4)^79 100=25 4
79^79=25 k+4^79 4^79=((4^5)^15) 4^4=(1024^15) 256=((1025-1)^15) (250+6) 4^79=(25 a)-6 79^79=(25 m)-6 therefore last 2 digits may be (25-6)or(50-6)or(75-6)or(100-6) 19 or 44 or 69 or 94 79^79=(80-1)^79=(4 20-1)^79=(4 n)-1 out of 19,44,69,94 the number of the form {(4*n)-1} is 19 therefore last 2 digits of 79^79=19

Computing for the last 2 digits of 7 9 79 79^{79} by finding its product several times, we have the following: { 7 9 2 = 41 7 9 3 = 39 7 9 4 = 81 . . . 7 9 9 = 19 7 9 10 = 01 \begin{cases} {79^2= 41}\\{79^3=39}\\{79^4=81}\\...\\{79^9=19}\\{79^{10}=01}\\ \end{cases} Based from the cases, we found out that after multiplying 01 01 by 79 79 , the last two digits of 7 9 11 79^{11} is 79 79 . Therefore, we are sure in this case that there are 10 10 products per cycle. Thus, 79 ( m o d 10 ) 9 ( m o d 10 ) 9 79\pmod {10}\equiv 9\pmod {10}\equiv 9 From the modulo operation above, it simply indicates of the last two digits of the 9 t h 9^{th} product. Hence, the answer is 19 \boxed{19} .

Yashvindra Rana
May 20, 2014

to make last digit ending with 1 we have to select 79*79

79*79=-----41(last tow digit)

{( _ 41)raise to power39}*79

(40+1)raise to power 39=last to digit are 61 (by using binomial therom)

now 61*79=last digit are19(ans)

Garvil Singhal
May 20, 2014

I have taken the concept of cyclicity in 2 digits rather than solving through mod theory ( congruences ). It means that i have followed the pattern of last 2 digits of consecutive powers of 79. The pattern which i get is as follows: 01,79,41,39,81,09,21,59,61,19,01.... Now by some logic we come to know that the last 2 digits of 79^70 are 01. And again skipping 9 powers means means skipping 9 last 2 digits which gives 19.

Calvin Lin Staff
May 13, 2014

Solution 1: It is not hard to find high powers of 79 79 modulo 100 100 by repeated squaring. The following calculations can be easily done by hand using standard multiplication procedure, cut off at two digits.

7 9 2 41 ( m o d 100 ) 79^2 \equiv 41 \pmod {100} , 7 9 4 4 1 2 81 ( m o d 100 ) , 79^4\equiv 41^2 \equiv 81 \pmod{100}, 7 9 8 8 1 2 61 ( m o d 100 ) , 79^8\equiv 81^2 \equiv 61 \pmod {100}, 7 9 16 6 1 2 21 ( m o d 100 ) , 79^{16}\equiv 61^2 \equiv 21 \pmod {100}, 7 9 32 2 1 2 41 ( m o d 100 ) , 79^{32}\equiv 21^2 \equiv 41\pmod {100}, 7 9 64 4 1 2 81 ( m o d 100 ) . 79^{64}\equiv 41^2 \equiv 81 \pmod{100}.

Because 79 = 64 + 15 , 79=64+15, 7 9 79 7 9 64 7 9 15 ( m o d 100 ) . 79^{79}\equiv 79^{64}\cdot 79^{15} \pmod {100}. To find 7 9 15 , 79^{15}, we can first find 7 9 5 = 7 9 4 79 81 79 99 1 ( m o d 100 ) . 79^5=79^4\cdot 79\equiv 81 \cdot 79 \equiv 99 \equiv -1 \pmod{100}. Then 7 9 15 ( 1 ) 3 1 ( m o d 100 ) 79^{15}\equiv (-1)^3\equiv -1 \pmod {100} and 7 9 79 81 ( 1 ) 19 ( m o d 100 ) , 79^{79}\equiv 81 \cdot (-1) \equiv 19 \pmod {100}, so the answer is 19. 19.

For the following solutions let ϕ ( N ) \phi(N) be the number of integers less than N N that are coprime to N N (also known as Euler's Totient function). If N = p 1 q 1 p 2 q 2 p n q n N = p_1^{q_1} p_2^{q_2} \ldots p_n^{q_n} then ϕ ( N ) = N ( 1 1 p 1 ) ( 1 1 p 2 ) ( 1 1 p n ) \phi(N) = N\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\ldots \left(1 - \frac{1}{p_n}\right) .

Solution 2: Since ϕ ( 100 ) = 100 ( 1 1 2 ) ( 1 1 5 ) = 40 \phi(100) = 100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right) = 40 , thus 7 9 79 7 9 1 7 9 40 2 7 9 1 ( m o d 100 ) 79^{79} \equiv 79^{-1}\cdot 79^{40\cdot 2} \equiv 79^{-1} \pmod{100} by Euler’s Theorem. Since gcd ( 79 , 100 ) = 1 \gcd(79,100) = 1 , thus a multiplicative inverse exists. We can calculate the inverse using the Euclidean Algorithm and get that:

\begin{array}{1,1} 100 &=& 79\times 1 + 21 \\ 79 &=& 21\times 3 + 16 \\ 21 &=& 16\times 1 + 5 \\ 16 &=& 5\times 3 + 1 \end{array}

Thus, the above shows that gcd ( 79 , 100 ) = 1 \gcd(79,100) = 1 and we can calculate the inverse as follows:

\begin{array}{1,1} 1 & = & 16 - 5\times 3 \\ & = & 16 - (21-16\times 1)\times 3 \\ & = & 16\times 4 - 21\times 3 \\ & = & (79 - 21\times 3)\times 4 - 21\times 3 \\ & = & 79\times 4 - 21\times 15 \\ & = & 79\times 4 - (100-79)\times 15 \\ & = & 79\times 19 - 100\times 15 \end{array}

So we have, 1 79 × 19 ( m o d 100 ) 1 \equiv 79\times 19 \pmod{100} 7 9 1 ( m o d 100 ) = 19 ( m o d 100 ) \Rightarrow 79^{-1} \pmod{100} = 19 \pmod{100} .

Solution 3: Since gcd ( 79 , 100 ) = 1 \gcd(79, 100) = 1 and ϕ ( 4 ) = 4 ( 1 1 2 ) = 2 \phi(4)= 4\left(1-\frac{1}{2}\right) = 2 , thus 7 9 79 3 1 3 ( m o d 4 ) 79^{79} \equiv 3^1 \equiv 3 \pmod{4} . Since ϕ ( 25 ) = 25 ( 1 1 5 ) = 20 \phi(25) = 25(1 - \frac{1}{5}) = 20 , thus 7 9 79 4 19 4 4 × 4 + 3 25 6 4 × 64 6 4 × 14 19 ( m o d 25 ) 79^{79} \equiv 4^{19} \equiv 4^{4\times4+3} \equiv 256^4 \times 64 \equiv 6^4 \times 14 \equiv 19 \pmod{25} . Since 19 3 ( m o d 4 ) 19 \equiv 3 \pmod{4} , thus 7 9 79 19 ( m o d 100 ) 79^{79} \equiv 19 \pmod{100} .

Will this (inverse) be applicable only for power minus one (multiplicative inverse)....what if it is like this- 27 7 288 277^{288} mod 100?.. @Calvin Lin

Krishna Ar - 6 years, 8 months ago
Nishant Bhakar
Dec 13, 2017

Use Euler's Totient Theorem with n = 200 n=200 and a = 79 a=79 (per the wiki), we get that 7 9 80 m o d 200 7 9 80 m o d 100 01 79^{80}\mod{200}\equiv79^{80}\mod{100}\equiv01 . Upon realizing that 79 × 19 m o d 100 01 79\times19\mod{100}\equiv01 , we are done.

Anwar .
Aug 25, 2017
  • The Euler Theorem gives : 7 9 40 1 ( m o d 100 ) 79^{40} \equiv 1 \pmod{100}
  • 7 9 79 = 7 9 39 + 40 79^{79}=79^{39+40} thus 7 9 79 7 9 39 ( m o d 100 ) 79^{79} \equiv 79^{39} \pmod{100}
  • 7 9 40 1 ( m o d 100 ) 79^{40} \equiv 1 \pmod{100} means that the 2 last digits of 7 9 40 79^{40} are 01 01 and 7 9 40 = 7 9 39 79 79^{40}=79^{39}*79
  • The cycle of power of 9 gives a 9 for all odd powers so the 2 last digit must resolve this pattern : A 9 79 = 01 A9*79=01 which gives 9 A + 71 0 ( m o d 10 ) 9*A+71\equiv 0 \pmod{10} thus A = 1 A=1 so the answer is 19 19
Otto Bretscher
Feb 23, 2016

We have 7 9 ϕ ( 100 ) = 7 9 40 1 ( m o d 100 ) 79^{\phi(100)}=79^{40}\equiv 1 \pmod{100} . Also, 19 79 = ( 20 1 ) ( 80 1 ) 1 ( m o d 100 ) 19*79=(20-1)*(80-1)\equiv 1 \pmod{100} . Thus 7 9 79 19 7 9 80 19 ( 7 9 40 ) 2 19 ( m o d 100 ) 79^{79}\equiv 19*79^{80}\equiv 19*(79^{40})^2\equiv \boxed{19} \pmod{100}

By Euler's Theorem, (Totient Function of 100 is 40)

"79^40 is congruent to 1 (mod 100)"

Square both sides, you'll get: "79^80 is congruent to 1 (mod 100)"


I'm now looking for a number that is congruent to 1 mod(100) and also divisible by 79:

I tried 79*9=711, but it's not congruent to 1 (mod100)

I tried 79*19= 1501, It's now congruent to 1 (mod100)


Going back to "79^80 is congruent to 1 (mod 100)"

It can also be "79^80 is congruent to 1501 (mod 100)"


Dividing both sides by 79, It will now be "79^79 is congruent to 19 (mod 100).

Therefore, the last two digits of 79^79 is 19.

明非 李
Nov 6, 2019

79^80=1(mod 100), 19*79=1(mod 100), 79^79=19(mod 100)

Jeffrey H.
Apr 12, 2019

By Euler's Theorem, 7 9 40 1 ( m o d 100 ) 79^{40}\equiv 1\pmod {100} , so 7 9 80 1 ( m o d 100 ) 79^{80}\equiv 1\pmod {100} . One can find that the modular inverse of 79 79 modulo 100 100 is 19 19 , so 7 9 79 7 9 80 19 19 ( m o d 100 ) 79^{79}\equiv 79^{80}\cdot 19 \equiv \boxed{19}\pmod {100} .

Jesse Nieminen
Oct 27, 2016

7 9 79 1 79 x ( m o d 100 ) 1 79 x ( m o d 100 ) 1 = 79 x + 100 y x 19 ( m o d 100 ) \begin{aligned} & 79^{79} \equiv \dfrac1{79} \equiv x \pmod{100} \\ \Rightarrow & 1 \equiv 79x \pmod{100} \\ \Rightarrow & 1 = 79x + 100y \\ \Rightarrow & x \equiv 19 \pmod{100} \end{aligned}

The Extended Euclidean Algorithm is used to solve the linear diophantine equation for x x .

Hence, the answer is 19 \boxed{19}

Noro Slivka
May 20, 2014

9^79 = ...89 -> so 1. one is 9 and we have carry 8; loop: 7 9 = ...3 - odd products; 3 9 = ...7 - even products; 79 is odd, so odd product and so 3+8(carry) = ...1 and so 19

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...