Digits of a fraction

What is the square root of the sum of the first 2 12 50 2^{12} -50 decimal digits of 25 99 \dfrac{25}{99} ?


The answer is 119.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 22, 2020

Note that 25 99 = 25 100 ( 1 1 1 100 ) = 0.25 ( 1 + 0.01 + 0.0001 + 0.000001 + ) = 0.25252525 = 0. 2 ˙ 5 ˙ \begin{aligned} \frac {25}{99} & = \frac {25}{100} \left(\frac 1{1-\frac 1{100}}\right) = 0.25 \left(1 + 0.01 + 0.0001 + 0.000001 + \cdots \right) = 0.25252525 \cdots = 0.\dot 2 \dot 5 \end{aligned} Then the sum of its first 2 12 50 2^{12} - 50 decimal digits is:

S = ( 2 + 5 ) × 2 12 50 2 S = 7 ( 2 11 25 ) = 7 ( 4 ( 2 9 ) 3 ( 2 3 ) 1 ) Let x = 2 3 = 7 ( 4 x 3 3 x 1 ) = 7 ( x 1 ) ( 4 x 2 + 4 x + 1 ) = 7 ( x 1 ) ( 2 x + 1 ) 2 Put back x = 2 3 = 8 = 7 2 × 1 7 2 = 7 × 17 = 119 \begin{aligned} S & = (2+5) \times \frac {2^{12} - 50}2 \\ \sqrt S & = \sqrt{7(2^{11}-25)} \\ & = \sqrt{7(4(2^9) - 3(2^3) - 1)} & \small \blue{\text{Let } x = 2^3} \\ & = \sqrt{7(4x^3-3x-1)} \\ & = \sqrt{7(x-1)(4x^2 + 4x+1)} \\ & = \sqrt{7(x-1)(2x+1)^2} & \small \blue{\text{Put back }x = 2^3 = 8} \\ & = \sqrt{7^2 \times 17^2} \\ & = 7 \times 17 = \boxed{119} \end{aligned}

Vilakshan Gupta
Feb 22, 2020

Since 25 99 = 0.252525 \frac{25}{99}=0.252525 \cdots , and 2 12 50 2^{12}-50 is an even number, the sum of first 2 12 50 2^{12}-50 digits is equal to ( 2 + 5 ) ( 2 12 50 2 ) = 7 ( 2 11 25 ) = 14161 (2+5)\left(\dfrac{2^{12}-50}{2}\right)=7(2^{11}-25)=14161 and therefore 14161 = 119 \sqrt{14161}=\boxed{119} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...