Dihedral angles 2

Level pending

Consider a pyramid whose base is a regular n n -gon.

Let V p ( n ) V_{p}(n) be the volume of the largest pyramid above that can be inscribed in a sphere of radius R R .

In the above n n -gonal pyramid with volume V p ( n ) V_{p}(n) , let λ ( n ) \lambda(n) be the angle between two adjacent slant faces.

Find λ ( 10 ) \lambda(10) (in degrees) to eight decimal places.

For a hexagonal pyramid refer to previous problem


The answer is 179.48697835.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 23, 2017

Assume the diagram above is any n n -gonal pyramid.

Let O P OP be the height H H of the pyramid, θ = 2 π n \theta = \dfrac{2\pi}{n} , and r r be the radius of the n n -gon.

Let E : ( r cos ( θ ) , r sin ( θ ) , 0 ) E: (-r\cos(\theta), r\sin(\theta), 0) , A : ( r cos ( θ ) , r sin ( θ ) , 0 ) A: (-r\cos(\theta), -r\sin(\theta), 0) , F : ( r , 0 , 0 ) F: (-r,0,0) , P : ( 0 , 0 , H ) P: (0,0,H) .

F P = r i + 0 j + H k , E P = r cos ( θ ) i r sin ( θ ) j + H k , A P = r cos ( θ ) i + r sin ( θ ) j + H k \vec{FP} = r\vec{i} + 0\vec{j} + H\vec{k} , \:\ \vec{EP} = r\cos(\theta)\vec{i} - r\sin(\theta)\vec{j} + H\vec{k}, \:\ \vec{AP} = r\cos(\theta)\vec{i} + r\sin(\theta)\vec{j} + H\vec{k}

u = F P × E P = H r sin ( θ ) i + H r ( cos ( θ ) 1 ) j r 2 sin ( θ ) \vec{u} = \vec{FP} \times \vec{EP} = Hr\sin(\theta)\vec{i} + Hr(\cos(\theta) - 1)\vec{j} - r^2\sin(\theta)

v = F P × A P = H r sin ( θ ) i + H r ( cos ( θ ) 1 ) j + r 2 sin ( θ ) \vec{v} = \vec{FP} \times \vec{AP} = -Hr\sin(\theta)\vec{i} + Hr(\cos(\theta) - 1)\vec{j} + r^2\sin(\theta)

u v = r 2 H 2 sin 2 ( θ ) + r 2 H 2 ( cos ( θ ) 1 ) 2 r 4 sin 2 ( θ ) \vec{u} \cdot \vec{v} = -r^2 H^2\sin^2(\theta) + r^2 H^2(\cos(\theta) - 1)^2 - r^4\sin^2(\theta)

u = v u v = u 2 = r 2 H 2 sin 2 ( θ ) + r 2 H 2 ( cos ( θ ) 1 ) 2 + r 4 sin 2 ( θ ) |\vec{u}| = |\vec{v}| \implies |\vec{u}| * |\vec{v}| = |\vec{u}|^2 = r^2 H^2 \sin^2(\theta) + r^2 H^2 (\cos(\theta) - 1)^2 + r^4\sin^2(\theta)

cos ( λ ) = \implies \cos(\lambda) = H 2 ( sin 2 ( θ ) + ( cos ( θ ) 1 ) 2 ) r 2 sin 2 ( θ ) H 2 ( sin 2 ( θ ) + ( cos ( θ ) 1 ) 2 ) + r 2 sin 2 ( θ ) \dfrac{H^2(\sin^2(\theta) + (\cos(\theta) - 1)^2) - r^2\sin^2(\theta)}{H^2(\sin^2(\theta) + (\cos(\theta) - 1)^2) + r^2\sin^2(\theta)} .

After doing some very tedious simplifying we obtain:

cos ( λ ) = ( 2 h 2 + r 2 ) cos ( θ ) + r 2 2 h 2 + r 2 + r 2 cos ( θ ) \cos(\lambda) = -\dfrac{(2h^2 + r^2)\cos(\theta) + r^2}{2h^2 + r^2 + r^2\cos(\theta)}

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = π n \angle{BAD} = \dfrac{\pi}{n} .

x 2 = r sin ( π n ) r = x 2 sin ( π n ) h = x 2 cot ( π n ) A A B C = 1 4 cot ( π n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{\pi}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{\pi}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{\pi}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{\pi}{n}) x^2 \implies

A n g o n = n 4 cot ( π n ) x 2 V p = n 12 cot ( π n ) x 2 H A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{\pi}{n}) x^2 \implies V_{p} = \dfrac{n}{12} \cot(\dfrac{\pi}{n}) x^2 H

The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3

Let H H be the height of the given pyramid.

In the right triangle above: A C = H R , B C = x 2 sin ( π n ) , A B = R AC = H - R, BC = \dfrac{x}{2 \sin(\dfrac{\pi}{n})}, AB = R \implies

R 2 = ( H R ) 2 + x 2 4 csc 2 ( p i n ) x 2 = 4 H ( 2 R H ) sin 2 ( π n ) R^2 = (H - R)^2 + \dfrac{x^2}{4} \csc^2(\dfrac{pi}{n}) \implies x^2 = 4H(2R - H) \sin^2(\dfrac{\pi}{n})

V p ( H ) = n 6 sin ( 2 π n ) ( 2 R H 2 H 3 ) \implies V_{p}(H) = \dfrac{n}{6} \sin(\dfrac{2\pi}{n}) (2RH^2 - H^3) \implies

d V p d H = n 6 sin ( 2 π n ) ( H ) ( 4 R 3 H ) = 0 \dfrac{dV_{p}}{dH} = \dfrac{n}{6} \sin(\dfrac{2\pi}{n}) (H) (4R - 3H) = 0 , H 0 H = 4 R 3 x 2 = 32 9 sin 2 ( π n ) R 2 x = 4 2 3 sin ( π n ) R H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{32}{9} \sin^2(\dfrac{\pi}{n}) R^2 \implies x = \dfrac{4 \sqrt{2}}{3} \sin(\dfrac{\pi}{n}) R

H = 4 R 3 H = \dfrac{4R}{3} maximizes V p ( H ) V_{p}(H) since d 2 V p d H 2 ( H = 4 R 3 ) = 2 n 3 sin ( π n ) R < 0 \dfrac{d^2V_{p}}{dH^2}|_{(H = \dfrac{4R}{3})} =\dfrac{-2n}{3} \sin(\dfrac{\pi}{n}) R < 0

H = 4 R 3 H = \dfrac{4R}{3} and x 2 = 32 9 sin 2 ( π n ) R 2 x^2 = \dfrac{32}{9} \sin^2(\dfrac{\pi}{n}) R^2 .

From above r = x 2 sin ( π n ) r = \dfrac{x}{2 \sin(\dfrac{\pi}{n})} r 2 = x 2 4 sin 2 ( π n ) . \implies r^2 =\dfrac{x^2}{4 \sin^2(\dfrac{\pi}{n})}.

Using cos ( λ ) = ( 2 h 2 + r 2 ) cos ( θ ) + r 2 2 h 2 + r 2 + r 2 cos ( θ ) \cos(\lambda) = -\dfrac{(2h^2 + r^2)\cos(\theta) + r^2}{2h^2 + r^2 + r^2\cos(\theta)} , where θ = 2 π n \theta = \dfrac{2\pi}{n} and H 2 = 16 R 2 9 H^2 = \dfrac{16 R^2}{9} and x 2 = 32 9 sin 2 ( π n ) R 2 r 2 = 8 9 R 2 x^2 = \dfrac{32}{9} \sin^2(\dfrac{\pi}{n}) R^2 \implies r^2 = \dfrac{8}{9} R^2 \implies cos ( λ ( n ) ) = 5 cos ( 2 π n ) + 1 5 + cos ( 2 π n ) λ ( n ) = arccos ( 5 cos ( 2 π n ) + 1 5 + cos ( 2 π n ) ) λ ( 10 ) = 179.48697835 \cos(\lambda(n)) = -\dfrac{5\cos(\dfrac{2\pi}{n}) + 1}{5 + \cos(\dfrac{2\pi}{n})} \implies \lambda(n) = \arccos(-\dfrac{5\cos(\dfrac{2\pi}{n}) + 1}{5 + \cos(\dfrac{2\pi}{n})}) \implies \lambda(10) = \boxed{179.48697835} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...