Consider a pyramid whose base is a regular -gon.
Let be the volume of the largest pyramid above that can be inscribed in a sphere of radius .
In the above -gonal pyramid with volume , let be the angle between two adjacent slant faces.
Find (in degrees) to eight decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Assume the diagram above is any n -gonal pyramid.
Let O P be the height H of the pyramid, θ = n 2 π , and r be the radius of the n -gon.
Let E : ( − r cos ( θ ) , r sin ( θ ) , 0 ) , A : ( − r cos ( θ ) , − r sin ( θ ) , 0 ) , F : ( − r , 0 , 0 ) , P : ( 0 , 0 , H ) .
F P = r i + 0 j + H k , E P = r cos ( θ ) i − r sin ( θ ) j + H k , A P = r cos ( θ ) i + r sin ( θ ) j + H k
u = F P × E P = H r sin ( θ ) i + H r ( cos ( θ ) − 1 ) j − r 2 sin ( θ )
v = F P × A P = − H r sin ( θ ) i + H r ( cos ( θ ) − 1 ) j + r 2 sin ( θ )
u ⋅ v = − r 2 H 2 sin 2 ( θ ) + r 2 H 2 ( cos ( θ ) − 1 ) 2 − r 4 sin 2 ( θ )
∣ u ∣ = ∣ v ∣ ⟹ ∣ u ∣ ∗ ∣ v ∣ = ∣ u ∣ 2 = r 2 H 2 sin 2 ( θ ) + r 2 H 2 ( cos ( θ ) − 1 ) 2 + r 4 sin 2 ( θ )
⟹ cos ( λ ) = H 2 ( sin 2 ( θ ) + ( cos ( θ ) − 1 ) 2 ) + r 2 sin 2 ( θ ) H 2 ( sin 2 ( θ ) + ( cos ( θ ) − 1 ) 2 ) − r 2 sin 2 ( θ ) .
After doing some very tedious simplifying we obtain:
cos ( λ ) = − 2 h 2 + r 2 + r 2 cos ( θ ) ( 2 h 2 + r 2 ) cos ( θ ) + r 2
Let B C = x be a side of the n − g o n , A C = A B = r , A D = h ∗ , and ∠ B A D = n π .
2 x = r sin ( n π ) ⟹ r = 2 sin ( n π ) x ⟹ h ∗ = 2 x cot ( n π ) ⟹ A △ A B C = 4 1 cot ( n π ) x 2 ⟹
A n − g o n = 4 n cot ( n π ) x 2 ⟹ V p = 1 2 n cot ( n π ) x 2 H
The volume of the sphere V s = 3 4 π R 3
Let H be the height of the given pyramid.
In the right triangle above: A C = H − R , B C = 2 sin ( n π ) x , A B = R ⟹
R 2 = ( H − R ) 2 + 4 x 2 csc 2 ( n p i ) ⟹ x 2 = 4 H ( 2 R − H ) sin 2 ( n π )
⟹ V p ( H ) = 6 n sin ( n 2 π ) ( 2 R H 2 − H 3 ) ⟹
d H d V p = 6 n sin ( n 2 π ) ( H ) ( 4 R − 3 H ) = 0 , H = 0 ⟹ H = 3 4 R ⟹ x 2 = 9 3 2 sin 2 ( n π ) R 2 ⟹ x = 3 4 2 sin ( n π ) R
H = 3 4 R maximizes V p ( H ) since d H 2 d 2 V p ∣ ( H = 3 4 R ) = 3 − 2 n sin ( n π ) R < 0
H = 3 4 R and x 2 = 9 3 2 sin 2 ( n π ) R 2 .
From above r = 2 sin ( n π ) x ⟹ r 2 = 4 sin 2 ( n π ) x 2 .
Using cos ( λ ) = − 2 h 2 + r 2 + r 2 cos ( θ ) ( 2 h 2 + r 2 ) cos ( θ ) + r 2 , where θ = n 2 π and H 2 = 9 1 6 R 2 and x 2 = 9 3 2 sin 2 ( n π ) R 2 ⟹ r 2 = 9 8 R 2 ⟹ cos ( λ ( n ) ) = − 5 + cos ( n 2 π ) 5 cos ( n 2 π ) + 1 ⟹ λ ( n ) = arccos ( − 5 + cos ( n 2 π ) 5 cos ( n 2 π ) + 1 ) ⟹ λ ( 1 0 ) = 1 7 9 . 4 8 6 9 7 8 3 5 .