Dilations and Reflections!

Geometry Level 3

The parabola x 2 2 3 x y + 3 y 2 3 x y = 0 x^2 - 2\sqrt{3}xy + 3y^2 - \sqrt{3}x - y = 0 and a circle with radius 1 1 with center ( 3 4 a , a 4 ) \left (\dfrac{\sqrt{3}}{4}a,\dfrac{a}{4} \right ) , as shown above, is the image of a parabola and an inscribed circle which was reflected about the line y = 3 x y = \sqrt{3}x then dilated by a factor of 1 2 \dfrac{1}{2} .

If the area A A of the region bounded by the above parabola and circle can be expressed as A = a a b π a A = \dfrac{a\sqrt{a}}{b} - \dfrac{\pi}{a} , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 22, 2021

Prior to doing the I will quickly derive the equations of a reflection of a point about some line.

The given line has slope m m P P = m = 1 m m \implies m_{PP'} = m_{\perp} =-\dfrac{1}{m} \implies

m y + x = b m + a my + x = bm + a

and the given line is:

y m x = m x 0 + y 0 y - mx = -mx_{0} + y_{0}

Solving the system we obtain:

x = m 2 x 0 + ( b y 0 ) m + a m 2 + 1 = a + a 2 x = \dfrac{m^2x_{0} + (b - y_{0})m + a}{m^2 + 1} = \dfrac{a + a'}{2}

y = b m 2 + ( a x 0 ) m + y 0 m 2 + 1 = b + b 2 y = \dfrac{bm^2 + (a - x_{0})m + y_{0}}{m^2 + 1} = \dfrac{b + b'}{2}

Solving for a a' and b b' we obtain:

a = 2 m 2 x 0 + 2 ( b y 0 ) m + ( 1 m 2 ) a m 2 + 1 a' = \dfrac{2m^2x_{0} + 2(b - y_{0})m + (1 - m^2)a}{m^2+ 1}

b = b m 2 + 2 ( a x 0 ) m + 2 y 0 b m 2 + 1 b' = \dfrac{bm^2 + 2(a - x_{0})m + 2y_{0} - b}{m^2 + 1}

m = tan ( θ ) m = \tan(\theta) \implies

a = ( a x 0 ) cos ( 2 θ ) + ( b y 0 ) sin ( 2 θ ) + x 0 a' = (a - x_{0})\cos(2\theta) + (b - y_{0})\sin(2\theta) + x_{0}

and

b = ( a x 0 ) sin ( 2 θ ) ( b y 0 ) cos ( 2 θ ) + y 0 b' = (a - x_{0})\sin(2\theta) - (b - y_{0})\cos(2\theta) + y_{0}

Replacing a , b , a a,b,a' and b b' by x , y , x x,y,x' and y y' respectively we obtain:

x = ( x x 0 ) cos ( 2 θ ) + ( y y 0 ) sin ( 2 θ ) + x 0 x' = (x - x_{0})\cos(2\theta) + (y - y_{0})\sin(2\theta) + x_{0}

y = ( x x 0 ) sin ( 2 θ ) ( y y 0 ) cos ( 2 θ ) + y 0 y' = (x - x_{0})\sin(2\theta) - (y - y_{0})\cos(2\theta) + y_{0}

m = tan ( θ ) = 3 θ = π 3 m = \tan(\theta) = \sqrt{3} \implies \theta = \dfrac{\pi}{3} and since y = 3 x y = \sqrt{3}x passes thru the origin, using the equations of reflection above with a dilation factor of 1 2 \dfrac{1}{2} , we obtain:

x = 1 2 ( 1 2 x + 3 2 y ) x = \dfrac{1}{2}(-\dfrac{1}{2}x' + \dfrac{\sqrt{3}}{2}y')

y = 1 2 ( 3 2 x + 1 2 y ) y = \dfrac{1}{2}(\dfrac{\sqrt{3}}{2}x' + \dfrac{1}{2}y')

Using the above equations for the parabola x 2 2 3 x y + 3 y 2 3 x y = 0 x^2 - 2\sqrt{3}xy + 3y^2 - \sqrt{3}x - y = 0 we obtain:

1 4 x 2 3 2 x y + 3 4 y 2 \dfrac{1}{4}x'^2 - \dfrac{\sqrt{3}}{2}x'y' + \dfrac{3}{4}y'^2

+ 3 2 x 2 3 x y 3 2 y 2 + \dfrac{3}{2}x'^2 - \sqrt{3}x'y' - \dfrac{3}{2}y'^2

+ 9 4 x 2 + 3 3 2 x y + 3 4 y 2 + \dfrac{9}{4}x'^2 + \dfrac{3\sqrt{3}}{2}x'y' + \dfrac{3}{4}y'^2

+ 3 x 3 y 3 x y = 0 + \sqrt{3}x' - 3y' - \sqrt{3}x' - y' = 0

4 x 2 4 y = 0 y = x 2 \implies 4x'^2 - 4y' = 0 \implies \boxed{y' = x'^2}

and the center of the given circle ( 3 4 a , a 4 ) (\dfrac{\sqrt{3}}{4}a,\dfrac{a}{4}) ( 0 , a ) \rightarrow (0,a) in the x y x'y' plane.

Using y = x 2 y' = x'^2 and center O : ( 0 , a ) O':(0,a) and P : ( x , y ) = ( x , x 2 ) P':(x',y') = (x',x'^2) \implies

D = r 2 = x 2 + ( x 2 a ) 2 d D d x = 2 x ( 2 x 2 + 1 2 a ) = 0 D = r^2 = x'^2 + (x'^2 - a)^2 \implies \dfrac{dD}{dx} = 2x'(2x'^2 + 1 - 2a) = 0

x 0 x = ± 2 a 1 2 x' \neq 0 \implies x' = \pm\sqrt{\dfrac{2a - 1}{2}} and the radius r = 1 4 a 1 = 4 r = 1 \implies 4a - 1 = 4 \implies

a = 5 4 x = 3 2 y = 3 4 a = \dfrac{5}{4} \implies x' = \dfrac{\sqrt{3}}{2} \implies y' = \dfrac{3}{4} \implies the equation of the circle is

x 2 + ( y 5 4 ) 2 = 1 x'^2 + (y' - \dfrac{5}{4})^2 = 1 and the portion of the circle needed is y = 5 4 1 x 2 \boxed{y' = \dfrac{5}{4} - \sqrt{1 - x'^2}} .

The area A = 2 0 3 2 ( 5 4 1 x 2 x 2 ) d x A = 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} (\dfrac{5}{4} - \sqrt{1 - x'^2} - x'^2) dx

Letting x = sin ( λ ) d x = cos ( λ ) d λ x' = \sin(\lambda) \implies dx' = \cos(\lambda) d\lambda \implies

A = 2 ( 1 2 0 π 3 ( 1 + cos ( 2 λ ) ) d λ + ( 5 4 x x 3 3 ) 0 3 2 ) = A = 2(-\dfrac{1}{2}\displaystyle\int_{0}^{\dfrac{\pi}{3}} (1 + \cos(2\lambda)) d\lambda + (\dfrac{5}{4}x' - \dfrac{x'^3}{3})|_{0}^{\frac{\sqrt{3}}{2}}) =

2 ( 1 2 ( λ + 1 2 sin ( 2 λ ) ) 0 π 3 + 3 2 ) 2(-\dfrac{1}{2}(\lambda + \dfrac{1}{2}\sin(2\lambda))|_{0}^{\frac{\pi}{3}} + \dfrac{\sqrt{3}}{2})

= 3 3 4 π 3 = a a b π a a + b = 7 = \dfrac{3\sqrt{3}}{4} - \dfrac{\pi}{3} = \dfrac{a\sqrt{a}}{b} - \dfrac{\pi}{a} \implies a + b = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...