Try Setting x y \frac xy As The Subject?

Algebra Level 2

If x + y x y = 2 \dfrac {x+y}{x-y} = \sqrt 2 , find

x 2 + y 2 x y . \dfrac {x^2+y^2}{xy}.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Nov 28, 2016

x + y x y = 2 x + y = 2 ( x y ) ( x + y ) 2 = 2 ( x y ) 2 x 2 + 2 x y + y 2 = 2 x 2 4 x y + 2 y 2 2 x y = x 2 4 x y + y 2 x 2 + y 2 = 6 x y x 2 + y 2 x y = 6 x y x y = 6 for x y 0 \begin{aligned} \frac {x+y}{x-y} & = \sqrt 2 \\ x+y & = \sqrt 2 (x-y) \\ (x+y)^2 & = 2 (x-y)^2 \\ x^2+2xy+y^2 & = 2x^2-4xy+2y^2 \\ 2xy & = x^2-4xy+y^2 \\ x^2 + y^2 & = 6xy \\ \implies \frac {x^2+y^2}{xy} & = \frac {6xy}{xy} \\ & = \boxed{6} \quad \text{for } xy \ne 0 \end{aligned}

As a side note, we have to ensure that x y 0 xy \neq 0 , in order to justify the conclusion in the last step.

Calvin Lin Staff - 4 years, 6 months ago

@Faiza Kashish , you should key in (x+y)/(x-y) = x + y x y = \dfrac {x+y}{x-y} with the brackets instead of x+y/x - y = x + y x y = x + \dfrac yx - y . Similarly (x^2+y^2)/(xy) = x 2 + y 2 x y = \dfrac {x^2+y^2}{xy} instead of x^2+y^2/xy = x 2 + y 2 x y = x^2 + \dfrac {y^2}x y . Better still you use LaTex. You can see the LaTex codes by clicking on the pull-down menu ( \cdots ) at the right-hand-bottom corner of the problem and select "Toggle LaTex".

Chew-Seong Cheong - 4 years, 6 months ago

OK I will take care@chew seong cheong sir

Faiza Kashish - 4 years, 6 months ago

Simply apply C-D Rule and break the given expression

anshu garg - 4 years, 6 months ago
Yatin Khanna
Nov 29, 2016

First of all, note that;
If x = 0 x=0 or y = 0 y=0 ;
Then, x + y x y \frac{x+y}{x-y} will be 1 -1 and 1 1 respectively; So, we can safely conclude that x y 0 xy \neq 0 ; hence the required fraction is NOT indeterminate for any value of the variables.

Now,
Let x 2 + y 2 x y = a \frac{x^2 + y^2}{xy} = a ;
x 2 + y 2 + 2 x y x 2 + y 2 2 x y = a + 2 a 2 \implies \frac {x^2+y^2+2xy}{x^2+y^2-2xy} = \frac {a+2}{a-2} ;
( x + y ) 2 ( x y ) 2 = a + 2 a 2 \implies \frac {(x+y)^2}{(x-y)^2} = \frac {a+2}{a-2} ;
2 = a + 2 a 2 \implies 2 = \frac{a+2}{a-2} ;
2 a 4 = a + 2 \implies 2a-4=a+2 ;
a = 6 \implies \boxed{a=6}

Note that componendo et dividendo was used in 2nd step and value of x + 2 x 2 \frac {x+2}{x-2} was put as 2 \sqrt {2} in 4th step and other steps follow.

Nice usage of componendo and dividendo !

Calvin Lin Staff - 4 years, 6 months ago
Zee Ell
Nov 28, 2016

A = x + y x y = 2 A = \frac {x+y}{x-y} = \sqrt {2}

x + y = 2 x 2 y x + y = \sqrt {2} x - \sqrt {2}y

x + y = 2 x 2 y x + y = \sqrt {2} x - \sqrt {2}y

( 2 + 1 ) y = ( 2 1 ) x ( \sqrt {2} + 1) y = ( \sqrt {2} -1)x

It is easy to see, that in the case of x=y=0, A would be undefined (division by zero); and in the cases ( x = 0 and y ≠ 0) or ( x ≠ 0 and y = 0), A = 1 would be true (instead of the A = square root of 2)).

Therefore, x≠ 0 and y ≠ 0 and we can divide by both x and y.

Now:

x y = 2 + 1 2 1 = 2 + 1 2 1 × 2 + 1 2 + 1 = 2 + 2 2 + 1 2 1 = 3 + 2 2 \frac{x}{y} = \frac { \sqrt{2} + 1}{ \sqrt{2} - 1} = \frac { \sqrt{2} + 1}{ \sqrt{2} - 1} × \frac { \sqrt{2} + 1}{ \sqrt{2} + 1} = \frac {2 + 2 \sqrt{2} + 1}{ 2 - 1} = 3 + 2 \sqrt{2}

Similarly:

y x = 2 1 2 + 1 = 2 1 2 + 1 × 2 1 2 1 = 2 2 2 + 1 2 1 = 3 2 2 \frac{y}{x} = \frac { \sqrt{2} - 1}{ \sqrt{2} + 1} = \frac { \sqrt{2} - 1}{ \sqrt{2} + 1} × \frac { \sqrt{2} - 1}{ \sqrt{2} - 1} = \frac {2 - 2 \sqrt{2} + 1}{ 2 - 1} = 3 - 2 \sqrt{2}

Then:

B = x 2 + y 2 x y = x 2 x y + y 2 x y = x y + y x = 3 + 2 2 + 3 2 2 = 6 B = \frac { x^2 + y^2}{xy} =\frac { x^2 }{xy} + \frac { y^2}{xy} = \frac {x}{y} + \frac {y}{x} = 3 + 2 \sqrt{2} + 3 - 2 \sqrt{2} = \boxed {6}

Ah yes, trusty old brute force :)

Calvin Lin Staff - 4 years, 6 months ago
Aman Dubey
Nov 28, 2016

we actually need to find x y + y x \frac{x}{y} +\frac {y}{x } from given data by dividing in numerator and denominator by y y and substiting value of x y \frac{x}{y} .

Tapas Mazumdar
Dec 12, 2016

First of all note that the condition for either of x x or y y to be zero is non-existent since, x + y x y 2 \dfrac{x+y}{x-y} \neq \sqrt2 \ for any value of the other non-zero variable if x y = 0 xy=0 .

So, proceeding by the hint as stated in the title of the problem, divide both the numerator and denominator of the LHS of the equation by y y to get,

x y + 1 x y 1 = 2 \dfrac{\frac xy +1}{\frac xy - 1} = \sqrt2

Similarly for the expression to be obtained, one can write it as,

( x y ) 2 + 1 x y Dividing numerator and denominator by y 2 \dfrac{{\left(\frac xy\right)}^2 +1}{\frac xy} \qquad \qquad \small\text{Dividing numerator and denominator by} \ y^2

Take x y \dfrac xy as a separate variable, z z ,and solve accordingly,

z + 1 z 1 = 2 z = 2 + 1 2 1 = 3 + 2 2 \begin{aligned} & \dfrac{z+1}{z-1} = \sqrt2 \\ \implies & z = \dfrac{\sqrt2 +1}{\sqrt2 -1} = 3+2\sqrt2 \end{aligned}

Plugging in z z in our required expression, we get,

( 3 + 2 2 ) 2 + 1 3 + 2 2 = 6 \dfrac{{\left(3+2\sqrt2\right)}^2 + 1}{3+2\sqrt2} = \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...