2007 Diophantine equation.....

Find all the positive integer solutions ( x ; y ) (x;y) of the equation: x y + x = 2007 y + 2 xy+x=2007y+2 .

Call S = x 1 + y 1 + x 2 + y 2 + . . . . . . . . . + x n 1 + y n 1 + x n + y n S=x_1+y_1+x_2+y_2+.........+x_{n-1}+y_{n-1}+x_n+y_n which is the value of S S ?


The answer is 8022.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronald Overwater
Dec 27, 2014

x y + x = x ( y + 1 ) = 2007 y + 2 xy+x=x(y+1)=2007y+2

x = 2007 y + 2 y + 1 = 2007 2005 y + 1 x=\dfrac{2007y+2}{y+1}=2007-\dfrac{2005}{y+1}

Factorizing we get 2005 = 5 × 401 2005=5 \times 401

So using y > 0 y>0 , we get three solutions for ( y + 1 ) : { 5 , 401 , 2005 } (y+1): \{5, 401,2005\} , which gives the solutions: ( x , y ) = { ( 1606 , 4 ) ; ( 2002 , 400 ) ; ( 2006 , 2004 ) } (x,y)= \{(1606,4);(2002,400); (2006,2004)\}

Summing all x and y coordinates we get a sum S = 8022 S = 8022

Damn it. I forgot that y = 0 y=0 cannot be a positive solution -_-

Josh Banister - 6 years, 2 months ago

Similar to Ronald Overwater's Solution:

Alternatively, we can isolate y instead of x (for those who blindly isolate y from equations upon sight),

y = x 2 2007 x \frac {x-2}{2007-x} = - 2 x 2007 x \frac{2-x}{2007-x} = 2005 2007 x \frac {2005}{2007-x} - 1

Factoring 2005 yields:

(2007-x) ; {5, 401, 2005}

--> x = {2002, 1606, 2006}

--> y = {400, 4, 2004}

--> S = 8022

Mark Wo - 6 years, 1 month ago

Use Simon's Favourite Factoring Trick....

Anubhav Mahapatra - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...