Diophantine Here!

y 3 = 4 x 2 + 4 x + 9 \large{y^3 = 4x^2+4x+9}

Find the number of ordered positive integral pairs ( x , y ) (x,y) satisfying the equation above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jun 3, 2017

Upon observation, this Diophantine equation can be written as:

y 3 = 4 x 2 + 4 x + 8 + 1 y^3 = 4x^2 + 4x + 8 + 1

which yields the following two factored forms:

y 3 1 = 4 ( x 2 + x + 2 ) ( y 1 ) ( y 2 + y + 1 ) = 4 ( x 2 + x + 2 ) y^3 - 1 = 4(x^2 + x + 2) \Rightarrow (y-1)(y^2 + y + 1) = 4(x^2 + x + 2) (i);

y 3 8 = 4 x 2 + 4 x + 1 ( y 2 ) ( y 2 + 2 y + 4 ) = ( 2 x + 1 ) 2 y^3 - 8 = 4x^2 + 4x + 1 \Rightarrow (y-2)(y^2 + 2y + 4) = (2x+1)^2 (ii).

For expression (i), we now find that:

y 1 = 4 ; y 2 + y + 1 = x 2 + x + 2 y = 5 ; 31 = x 2 + x + 2 y = 5 ; x = 1 ± 117 2 y - 1 = 4; y^2 + y + 1 = x^2 + x + 2 \Rightarrow y = 5; 31 = x^2 + x + 2 \Rightarrow \boxed{y = 5; x = \frac{-1 \pm \sqrt{117}}{2}} ;

y 1 = 2 ; y 2 + y + 1 = 2 ( x 2 + x + 2 ) y = 3 ; 13 = 2 x 2 + 2 x + 4 y = 3 ; x = 1 ± 19 2 y - 1 = 2; y^2 + y + 1 = 2(x^2 + x + 2) \Rightarrow y = 3; 13 = 2x^2 + 2x + 4 \Rightarrow \boxed{y = 3; x = \frac{-1 \pm \sqrt{19}}{2}} ;

y 1 = 1 ; y 2 + y + 1 = 4 ( x 2 + x + 2 ) y = 2 ; 7 = 4 x 2 + 4 x + 8 y = 2 ; x = 1 2 y - 1 = 1; y^2 + y + 1 = 4(x^2 + x + 2) \Rightarrow y = 2 ; 7 = 4x^2 + 4x + 8 \Rightarrow \boxed{y = 2; x = -\frac{1}{2}} ;

y 1 = 4 ( x 2 + x + 2 ) ; y 2 + y + 1 = 1 y = 0 , 1 y - 1 = 4(x^2 + x + 2); y^2 + y + 1 = 1 \Rightarrow \boxed{y = 0, -1} ;

y 1 = 2 ( x 2 + x + 2 ) ; y 2 + y + 1 = 2 y = 1 ± 5 2 y - 1 = 2(x^2 + x + 2); y^2 + y + 1 = 2 \Rightarrow \boxed{y = \frac{-1 \pm \sqrt{5}}{2}} ;

y 1 = x 2 + x + 2 ; y 2 + y + 1 = 4 y = 1 ± 13 2 y - 1 = x^2 + x + 2; y^2 + y + 1 = 4 \Rightarrow \boxed{y = \frac{-1 \pm \sqrt{13}}{2}} .

For expression (ii), we now find that:

y 2 = 1 ; y 2 + 2 y + 4 = ( 2 x + 1 ) 2 y = 3 ; 19 = ( 2 x + 1 ) 2 y = 3 ; x = 1 ± 19 2 y - 2 = 1; y^2 + 2y + 4 = (2x+1)^2 \Rightarrow y = 3; 19 = (2x+1)^2 \Rightarrow \boxed{y = 3; x = \frac{-1 \pm \sqrt{19}}{2}} ;

y 2 = 2 x + 1 ; y 2 + 2 y + 4 = 2 x + 1 y 2 + y + 6 = 0 y = 1 ± 23 i 2 y - 2 = 2x+ 1; y^2 + 2y + 4 = 2x + 1 \Rightarrow y^2 + y + 6 = 0 \Rightarrow \boxed{y = \frac{-1 \pm \sqrt{23}i}{2}} ;

y 2 = ( 2 x = 1 ) 2 ; y 2 + 2 y + 4 = 1 y 2 + 2 y + 3 = 0 y = 1 ± 2 y - 2 = (2x=1)^2; y^2 + 2y + 4 = 1 \Rightarrow y^2 + 2y + 3 = 0 \Rightarrow \boxed{y = -1 \pm \sqrt{2}} .

Conclusion: there are NO positive integral pairs ( x , y ) (x,y) that satisfy the above Diophantine equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...