DiophantinMO

Solve the following equation in positive integers.

x 2 + y 2 = 1997 ( x y ) x^{2} + y^{2} =1997(x-y)

If there are n n integer-pair solutions ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , ( x n , y n ) (x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots (x_n, y_n) , give your answer as k = 1 n ( x k + y k ) \displaystyle \sum_{k=1}^n (x_k+y_k) .


The answer is 2287.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 14, 2020

The equation can be written as ( 2 x 1997 ) 2 + ( 2 y + 1997 ) 2 = 2 × 199 7 2 (2x - 1997)^2 + (2y + 1997)^2 \; = \; 2 \times 1997^2 Since 1997 1997 is a prime number that is congruent to 1 1 modulo 4 4 , we see that we can factorize this identity into a product of irreducibles in the Gaussian integers Z [ i ] \mathbb{Z}[i] ( 2 x 1997 ) + ( 2 y + 1997 ) i 2 = ( 1 + i ) ( 1 i ) ( 34 + 29 i ) 2 ( 34 29 i ) 2 \big|(2x - 1997) + (2y + 1997)i\big|^2 \; = \; (1 + i)(1 - i)(34 + 29i)^2(34 - 29i)^2 and hence we deduce that ( 2 x 1997 ) + ( 2 y 1997 ) i (2x-1997) + (2y - 1997)i must be equal to one of u ( 1 + i ) ( 34 + 29 i ) 2 = u ( 1657 + 2287 i ) u ( 1 + i ) ( 34 + 29 i ) ( 34 29 i ) = u ( 1997 + 1997 i ) u ( 1 + i ) ( 34 29 i ) 2 = u ( 2287 1657 i ) \begin{aligned} u(1+i)(34 + 29i)^2 & = \; u(-1657 + 2287i) \\ u(1+i)(34 + 29i)(34 -29i) & = \; u(1997 + 1997i) \\ u(1+i)(34 - 29i)^2 & = \; u(2287 - 1657i) \end{aligned} where u { 1 , 1 , i , i } u \in \{1,-1,i,-i\} is a unit. Since x , y > 0 x,y > 0 we deduce that ( 2 x 1997 ) + ( 2 y + 1997 ) i = ± 1657 + 2287 i (2x - 1997) + (2y + 1997)i \; = \; \pm1657 + 2287i so that possible solutions in positive integers are ( x , y ) = ( 1827 , 145 ) (x,y) = (1827,145) and ( 170 , 145 ) (170,145) . This makes the answer 1827 + 170 + 2 × 145 = 2287 1827 + 170 + 2\times145 = \boxed{2287} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...