Dipole in a sphere

A point dipole p \vec{p} of magnitude 2 C-m 2 \text{C-m} and in the direction of z- axis is located at O = ( 0 , 0 , 0 ) O = \left(0,0,0\right) . This dipole is embedded at the center of a sphere of linear dielectric material (with radius R = 10 cm R = 10 \text{cm} and dielectric constant ϵ r = 1.5 \epsilon_{r} = 1.5 ).

Find the electric potential at a point P = ( 3 , 4 , 5 ) P = \left(3,4,5\right) cm \text{cm} correct to two decimal places.

The answer is of the form a × 10 12 V a \times {10}^{12} \text{V} . Submit the value of a a .


Take the value of electric permittivity of free space as 8.85 × 10 12 F/m 8.85 \times {10}^{-12} \text{F/m} .
Note: This is a question of Introduction to Electrodynamics - David J. Griffiths


The answer is 2.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Mar 22, 2020

The general solution of the Laplace equation 2 ϕ = 0 {\nabla}^2\phi = 0 (because of absence of any free charge density) in spherical coordinates using principle of superposition (adding the extra potential term due to dipole ) is given in terms of spherical coordinates as follows:
ϕ ( r , θ , ϕ ) = { ϕ 1 ( r , θ ) = l = 0 [ ( A l r l + B l r l + 1 ) P l ( cos θ ) ] + p cos θ 4 π ϵ 0 r 2 r < R ϕ 2 ( r , θ ) = l = 0 [ ( D l r l + C l r l + 1 ) P l ( cos θ ) ] r > R \phi\left(r, \theta, \phi\right) = \begin{cases} \phi_1\left(r, \theta\right) = \displaystyle\sum_{l = 0}^{\infty}\left[\left(A_lr^l + \dfrac{B_l}{r^{l+1}}\right)P_l(\cos\theta)\right] + \dfrac{p\cos\theta}{4\pi\epsilon_{0}r^2} & r < R \\ \phi_2\left(r, \theta\right) = \displaystyle\sum_{l = 0}^{\infty}\left[\left(D_lr^l + \dfrac{C_l}{r^{l+1}}\right)P_l(\cos\theta)\right] & r > R \\ \end{cases}
Note that the dipole term is only added in ϕ 1 \phi_1 , since it is account for in ϕ 2 \phi_2 in the constant C 1 C_1 . Also,the solution is independent of the azimuthal angle ϕ \phi because of azimuthal symmetry. Due to the same reason, the solution is expressed in associated Legendre polynomials instead of spherical harmonics .

Now, the solution should be indicative of the following facts: - The potential should go to zero at an infinitely long distance from the dipole.
- The potential must be finite in the absence of the dipole at r = 0 r = 0 .

For abiding by point 1, D l D_l should be set to zero. For abiding by point 2, B l B_l should be set to zero (since dipole term is accounted for separately). So our solution now looks like: ϕ ( r , θ , ϕ ) = { ϕ 1 ( r , θ ) = l = 0 [ ( A l r l ) P l ( cos θ ) ] + p cos θ 4 π ϵ 0 r 2 r < R ϕ 2 ( r , θ ) = l = 0 [ ( C l r l + 1 ) P l ( cos θ ) ] r > R \phi\left(r, \theta, \phi\right) = \begin{cases} \phi_1\left(r, \theta\right) = \displaystyle\sum_{l = 0}^{\infty}\left[\left(A_lr^l\right)P_l(\cos\theta)\right] + \dfrac{p\cos\theta}{4\pi\epsilon_{0}r^2} & r < R \\ \phi_2\left(r, \theta\right) = \displaystyle\sum_{l = 0}^{\infty}\left[\left(\dfrac{C_l}{r^{l+1}}\right)P_l(\cos\theta)\right] & r > R \\ \end{cases}

Now, we apply the dielectric boundary conditions:
1) ϵ 0 ϵ r E 1 r = ϵ 0 E 2 r \epsilon_{0}\epsilon_r E_{1r} = \epsilon_{0}E_{2r} at r = R r=R due to absence of a surface charge density of the sphere r = R r = R .
2) E 1 t = E 2 t E_{1t} = E_{2t} at r = R r=R .
where E 1 r E_{1r} and E 2 r E_{2r} are the electric field in radial direction for r < R r < R and r > R r > R respectively and E 1 t E_{1t} and E 2 t E_{2t} are the electric field in tangential direction for r < R r < R and r > R r > R respectively.

Using the first boundary condition, we get:
ϵ 0 ϵ r E 1 r = ϵ 0 E 2 r ϵ r ( ϕ 1 r ) r = R = ( ϕ 2 r ) r = R ϵ r ( l = 0 [ l A l r l 1 P l ( cos θ ) ] p cos θ 2 π ϵ 0 R 3 ) = l = 0 [ ( l + 1 ) C l R l + 2 P l ( cos θ ) ] For l 1 ϵ r ( l A l R l 1 ) = ( l + 1 ) C l R l + 2 C l = l l + 1 ϵ r R 2 l + 1 A l 1 For l = 1 ϵ r ( A 1 cos θ p cos θ 2 π ϵ 0 R 3 ) = 2 C 1 cos θ R 3 C 1 = ϵ r ( p 4 π ϵ 0 A 1 R 3 2 ) 2 \begin{aligned} \epsilon_{0}\epsilon_r E_{1r} &= \epsilon_{0}E_{2r}\\ \epsilon_r \left(-\dfrac{\partial\phi_1}{\partial r}\right)_{r=R} & = \left(-\dfrac{\partial\phi_2}{\partial r}\right)_{r=R}\\ \epsilon_r \left(\displaystyle \sum_{l=0}^{\infty}\left[l A_lr^{l-1}P_l(\cos\theta)\right] - \dfrac{p\cos\theta}{2\pi\epsilon_0 R^3}\right) & = \displaystyle \sum_{l=0}^{\infty} \left[-(l+1)\dfrac{C_l}{R^{l+2}}P_l(\cos\theta)\right]\\ \\ \text{For } l\neq 1\\ \epsilon_r\left(l A_l R^{l-1}\right) & = -(l+1)\dfrac{C_l}{R^{l+2}}\\ C_l & = \dfrac{-l}{l+1}\epsilon_r R^{2l+1}A_l \longrightarrow \boxed{1}\\ \\ \text{For } l = 1 & \\ \epsilon_r\left(A_1\cos\theta - \dfrac{p\cos\theta}{2\pi\epsilon_0 R^3}\right) & = \dfrac{-2C_1\cos\theta}{R^3}\\ C_1 & = \epsilon_r\left(\dfrac{p}{4\pi\epsilon_0} - \dfrac{A_1R^3}{2}\right) \longrightarrow \boxed{2}\\ \end{aligned}

Using the second boundary condition, we get: E 1 θ = E 2 θ (only in θ direction because of azimuthal symmetry) ( ϕ 1 θ ) r = R = ( ϕ 2 θ ) r = R l = 0 [ A l R l d ( P l ( cos θ ) ) d θ ] p sin θ 4 π ϵ 0 R 2 = l = 0 [ C l R l + 1 d ( P l ( cos θ ) ) d θ ] For l 1 A l R l = C l R l + 1 3 For l = 1 A 1 R + p 4 π ϵ 0 R 2 = C 1 R 2 C 1 = A 1 R 3 + p 4 π ϵ 0 4 \begin{aligned} E_{1\theta} &= E_{2\theta} \text{(only in }\theta\text{ direction because of azimuthal symmetry)}\\ \left(-\dfrac{\partial\phi_1}{\partial \theta}\right)_{r=R} & = \left(-\dfrac{\partial\phi_2}{\partial \theta}\right)_{r=R}\\ \displaystyle \sum_{l=0}^{\infty}\left[A_l R^l \dfrac{d\left(P_l(\cos\theta)\right)}{d\theta}\right] - \dfrac{p \sin\theta}{4\pi\epsilon_0 R^2} & = \displaystyle \sum_{l=0}^{\infty}\left[\dfrac{C_l}{R^{l+1}} \dfrac{d\left(P_l(\cos\theta)\right)}{d\theta}\right]\\ \\ \text{For } l\neq 1\\ A_l R^l &= \dfrac{C_l}{R^{l+1}} \longrightarrow \boxed{3}\\ \\ \text{For } l = 1\\ A_1R + \dfrac{p}{4\pi\epsilon_0R^2} & = \dfrac{C_1}{R^2}\\ C_1 & = A_1 R^3 + \dfrac{p}{4\pi\epsilon_0} \longrightarrow \boxed{4}\\ \end{aligned} From equations 1 \boxed{1} and 3 \boxed{3} , A l = C l = 0 l 1 A_l = C_l = 0 \ \forall \ l\neq 1 .
From equations 2 \boxed{2} and 4 \boxed{4} , A 1 = p ( ϵ r 1 ) 2 π ϵ 0 R 3 ( ϵ r + 2 ) A_1 = \dfrac{p\left(\epsilon_r - 1\right)}{2\pi\epsilon_0 R^3 \left(\epsilon_r + 2\right)} and C 1 = 3 p ϵ r 4 π ϵ 0 ( ϵ r + 2 ) C_1 = \dfrac{3 p \epsilon_r}{4\pi\epsilon_0\left(\epsilon_r + 2\right)} .

Using the above results and substituting in the solution form of potential, we get: ϕ ( r , θ , ϕ ) = { ϕ 1 ( r , θ ) = p cos θ 4 π ϵ 0 r 2 [ 1 + 2 r 3 R 3 ( ϵ r 1 ) ( ϵ r + 2 ) ] r < R ϕ 2 ( r , θ ) = p cos θ 4 π ϵ 0 r 2 [ 3 ϵ r + 2 ] r > R \phi\left(r, \theta, \phi\right) = \begin{cases} \phi_1\left(r, \theta\right) = \dfrac{p\cos\theta}{4\pi\epsilon_0 r^2}\left[1 + 2\dfrac{r^3}{R^3}\dfrac{\left(\epsilon_r - 1\right)}{\left(\epsilon_r + 2\right)}\right] & r<R \\ \phi_2\left(r, \theta\right) = \dfrac{p\cos\theta}{4\pi\epsilon_0 r^2}\left[\dfrac{3}{\epsilon_r + 2}\right] & r > R \\ \end{cases}

Since we want to find the potential at a point inside the sphere, we substitute the values of the given parameters into ϕ 1 \phi_1 with r = 5 2 r = 5\sqrt{2} and θ = π 4 \theta = \dfrac{\pi}{4} , we get ϕ 1 2.8 × 10 12 V \phi_1 \approx \color{#69047E}{\boxed{2.8 \times {10}^{12} V}} .

How do we know that the potential is to be determined at a point inside the sphere? The units of the coordinates of P P are not mentioned, and it is obvious to assume the S. I. system of units for them, which indicates that the point is outside the sphere.

A Former Brilliant Member - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...