Direct comparison

Calculus Level 1

In fact, this is what Chinese students are all doing when dealing with problems of this kind, which turns out to be the most trivial method.

For all positive integer n n , is it always true that i = 1 n i 1 i ( i + 1 ) < 2 n \displaystyle \sum_{i=1}^n \sqrt{\dfrac{i-1}{i(i+1)}}<2\sqrt{n} ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Joseph Newton
Aug 23, 2019

Now, while k > 0 k>0 , k 1 < k + 1 k 1 k ( k + 1 ) < 1 k k 1 k ( k + 1 ) < 1 k k = 1 n k 1 k ( k + 1 ) < k = 1 n 1 k ( 1 ) \begin{aligned}k-1<k+1\implies\frac{k-1}{k(k+1)}&<\frac1k\\ \implies\sqrt{\frac{k-1}{k(k+1)}}&<\frac1{\sqrt k}\\ \implies\sum_{k=1}^n\sqrt{\frac{k-1}{k(k+1)}}&<\sum_{k=1}^n\frac1{\sqrt k}\qquad\qquad(1)\end{aligned} Now, we can rearrange the sum of 1 k \frac1{\sqrt k} to get something that looks like a Riemann sum for the function f ( x ) = 1 x f(x)=\frac1{\sqrt x} : k = 1 n 1 k = n ( 1 n k = 1 n n k ) n 0 1 1 x d x \sum_{k=1}^n\frac1{\sqrt k}=\sqrt n\left(\frac1n\sum_{k=1}^n\sqrt{\frac nk}\right)\approx\sqrt n\int_0^1\frac1{\sqrt x}dx Since k k begins at 1 1 and ends at n n , we can see that this Riemann sum is using the right end of each subinterval for the height. Then, since 1 x \frac1{\sqrt x} is a decreasing function, this must be a lower Riemann sum, and hence: k = 1 n 1 k < n 0 1 1 x d x = n [ 2 x ] 0 1 = 2 n \sum_{k=1}^n\frac1{\sqrt k}<\sqrt n\int_0^1\frac1{\sqrt x}dx=\sqrt n\big[2\sqrt x\big]_0^1=2\sqrt n k = 1 n 1 k < 2 n ( 2 ) \implies\sum_{k=1}^n\frac1{\sqrt k}<2\sqrt n\qquad\qquad(2) From ( 1 ) (1) and ( 2 ) (2) , we conclude: k = 1 n k 1 k ( k + 1 ) < 2 n for all positive integer values of n \boxed{\sum_{k=1}^n\sqrt{\frac{k-1}{k(k+1)}}<2\sqrt n\text{ for all positive integer values of }n}

Good! You used integral to prove the result, which needs less constructing and comparison yet using the powerful technique. Way better than the official answer!

Alice Smith - 1 year, 9 months ago

Log in to reply

Where can we find the official answer?

Frank Ramsey - 1 year, 9 months ago

You've used the Riemann sum for estimating reason, but it is not very clear that you can use the strict smaller than in the next calculation. A proper way to write should be k = 1 n 1 k 1 + 1 n 1 t d t = 1 + 2 t 1 n = 1 + 2 n 2 = 2 n 1 < 2 n . \sum_{k=1}^n \dfrac1{\sqrt k}\leq 1+\int_1^n \dfrac1{\sqrt t}dt=1+2\sqrt t\bigg|_1^n=1+2\sqrt n-2=2\sqrt n-1< 2\sqrt n.

Kelvin Hong - 1 year, 9 months ago
Mark Hennings
Aug 21, 2019

For any positive integer n n , we have n 3 + 6 n 2 + 8 n + 4 > 0 n 4 + 4 n 3 + 8 n 2 + 8 n + 4 > n 2 ( n + 1 ) ( n + 2 ) n 2 + 2 n + 2 > n ( n + 1 ) ( n + 2 ) 4 n 2 + 11 n + 8 > 4 n 2 + 8 n + 8 > 4 n ( n + 1 ) ( n + 2 ) 4 ( n + 1 ) ( n + 2 ) > n + 4 n ( n + 1 ) ( n + 2 ) 4 > n ( n + 1 ) ( n + 2 ) + 4 n ( n + 1 ) ( n + 2 ) 4 ( n + 1 ) > 4 n + n ( n + 1 ) ( n + 2 ) + 4 n ( n + 1 ) ( n + 2 ) 2 n + 1 > 2 n + n ( n + 1 ) ( n + 2 ) n ( n + 1 ) ( n + 2 ) < 2 ( n + 1 n ) \begin{aligned} n^3 + 6n^2 + 8n + 4 \; > \; 0 & \Rightarrow \; n^4 + 4n^3 + 8n^2 + 8n + 4 \; > \; n^2(n+1)(n+2) \; \Rightarrow \; n^2 + 2n + 2 \; > \; n\sqrt{(n+1)(n+2)} \\ & \Rightarrow \; 4n^2 + 11n + 8 \; > \; 4n^2 + 8n + 8 \; > \; 4n\sqrt{(n+1)(n+2)} \; \Rightarrow \; 4(n+1)(n+2) \; > \; n + 4n\sqrt{(n+1)(n+2)} \\ & \Rightarrow \; 4 \; > \; \frac{n}{(n+1)(n+2)} + \frac{4n}{\sqrt{(n+1)(n+2)}} \; \Rightarrow \; 4(n+1) \; > \; 4n + \frac{n}{(n+1)(n+2)} + \frac{4n}{\sqrt{(n+1)(n+2)}} \\ & \Rightarrow \; 2\sqrt{n+1} \; > \; 2\sqrt{n} + \sqrt{\frac{n}{(n+1)(n+2)}} \; \Rightarrow \; \sqrt{\frac{n}{(n+1)(n+2)}} \; < \; 2\big(\sqrt{n+1} - \sqrt{n}\big) \end{aligned} Note that the inequality m = 1 n m 1 m ( m + 1 ) < 2 n ( ) \sum_{m=1}^n \sqrt{\frac{m-1}{m(m+1)}} \; < \, 2\sqrt{n} \hspace{3cm} (\star) is true when n = 1 n=1 . Since m = 1 n + 1 m 1 m ( m + 1 ) = m = 1 n m 1 m ( m + 1 ) + n ( n + 1 ) ( n + 2 ) < m = 1 n m 1 m ( m + 1 ) + 2 ( n + 1 n ) \sum_{m=1}^{n+1} \sqrt{\frac{m-1}{m(m+1)}} \; = \; \sum_{m=1}^n \sqrt{\frac{m-1}{m(m+1)}} + \sqrt{\frac{n}{(n+1)(n+2)}} \; < \; \sum_{m=1}^n \sqrt{\frac{m-1}{m(m+1)}} + 2\big(\sqrt{n+1}-\sqrt{n}\big) the truth of inequality ( ) (\star) for all positive integers n n follows by induction.

Richard Desper
Dec 11, 2019

Let f ( n ) = i = 1 n i 1 i ( i + 1 ) f(n) = \sum_{i=1}^{n} \sqrt{\frac{i-1}{i(i+1)}} denote the left-hand side and g ( n ) = 2 n g(n) = 2\sqrt{n} , the right-hand side of the inequality.

Claim: for all positive integral n , f ( n ) < g ( n ) n, f(n) < g(n) .

Proof by induction:

True for the base case n = 1 n=1 , as f ( 1 ) = 0 < g ( 1 ) = 2 f(1) = 0 < g(1) = 2 .

Now for the induction step. Assume f ( n 1 ) < g ( n 1 ) f(n-1) < g(n-1) . Now we wish to see that f ( n ) < g ( n ) f(n) < g(n) . It suffices to show f ( n ) f ( n 1 ) < g ( n ) g ( n 1 ) f(n) - f(n-1) < g(n) - g(n-1) , as that would show that the right-hand side is growing faster than the left-hand side.

Note f ( n ) f ( n 1 ) = n 1 n ( n + 1 ) f(n) - f(n-1) = \sqrt{\frac{n-1}{n(n+1)}} . And we can use the mean value theorem to bound g ( n ) g ( n 1 ) g(n) - g(n-1) .

The mean value theorem tells us that g ( n ) g ( n 1 ) = g ( x 0 ) g(n) - g(n-1) = g'(x_0) , for a value of x 0 ( n 1 , n ) x_0 \in (n-1,n) . Now g ( x ) = 1 x g'(x) = \sqrt{\frac{1}{x}} , and g ( x ) g'(x) is a decreasing function.

Thus g ( x 0 ) > 1 n g'(x_0) > \sqrt{\frac{1}{n}} .

In conclusion, f ( n ) f ( n 1 ) = n 1 n ( n + 1 ) < 1 n < g ( n ) g ( n 1 ) f(n) - f(n-1) = \sqrt{\frac{n-1}{n(n+1)}} < \sqrt{\frac{1}{n}} < g(n) - g(n-1) . The inequality in the middle is obvious, since n 1 n + 1 < 1 \frac{n-1}{n+1} < 1 .

W Yh
Dec 17, 2020

According to the first mathematical induction, the problem is an actually easy one.

The only thing we need to do is just to substract 2 k + 1 2\sqrt{k+1} from 2 k + k ( k + 1 ) ( k + 2 ) 2\sqrt{k}+\sqrt{\frac{k}{(k+1)(k+2)}} , and judge whether the outcome is negative absolutely.

The next step where we can employ a direct and violent way is to let f ( x ) = 2 x + x ( x + 1 ) ( x + 2 ) 2 x + 1 f(x)=2\sqrt{x}+\sqrt{\frac{x}{(x+1)(x+2)}}-2\sqrt{x+1}

Then we have lim x + f ( x ) = 0 \lim_{x \to +\infty}f(x)=0 and f ( x ) = 1 x 1 x + 1 + ( x ( x + 1 ) ( x + 2 ) ) > 0 f'(x)=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}+(\sqrt{\frac{x}{(x+1)(x+2)}})'>0 . Thus we come to the conclusion that f ( x ) < 0 f(x)<0 when x > 0 x>0 , which means f ( n ) = 2 n + n ( n + 1 ) ( n + 2 ) 2 n + 1 < 0 f(n)=2\sqrt{n}+\sqrt{\frac{n}{(n+1)(n+2)}}-2\sqrt{n+1}<0 for every positive integer n n .

Then the problem is solved with the validity of the first mathematical induction.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...