Dirty Algebra

Geometry Level 3

a 1 a 2 = 1 6 { a }\sqrt { 1-{ a }^{ 2 } } =\frac { 1 }{ \sqrt { 6 } }

Given that the equation above is fulfilled for 0 < a < 1 0<a<1 , find a 6 + ( 1 a 2 ) 3 { a }^{ 6 }+{ \left( 1-{ a }^{ 2 } \right) }^{ 3 } .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Archit Boobna
May 10, 2015

Let a = sin ( x ) a=\sin { \left( x \right) } , so 1 a 2 = cos ( x ) \sqrt { 1-{ a }^{ 2 } } =\cos { \left( x \right) }

Now we have sin ( x ) cos ( x ) = 1 6 \sin { \left( x \right) } \cos { \left( x \right) } =\frac { 1 }{ \sqrt { 6 } }

Doubling both sides 2 sin ( x ) cos ( x ) = 2 6 2\sin { \left( x \right) } \cos { \left( x \right) } =\frac { 2 }{ \sqrt { 6 } }

or sin ( 2 x ) = 2 6 \sin { \left( 2x \right) } =\frac { 2 }{ \sqrt { 6 } }

Now we need to find a 6 + ( 1 a 2 ) 3 { a }^{ 6 }+{ \left( 1-{ a }^{ 2 } \right) }^{ 3 }

Which is equal to a 6 + ( 1 a 2 ) 6 { a }^{ 6 }+{ \left( \sqrt { 1-{ a }^{ 2 } } \right) }^{ 6 }

or

sin 6 ( x ) + cos 6 ( x ) \sin ^{ 6 }{ \left( x \right) } +\cos ^{ 6 }{ \left( x \right) }

Which is equal to (proof in comments section) 1 3 4 sin 2 ( x ) 1-\frac { 3 }{ 4 } \sin ^{ 2 }{ \left( x \right) }

Which gives 1 3 4 ( 2 6 ) 2 1-\frac { 3 }{ 4 } { \left( \frac { 2 }{ \sqrt { 6 } } \right) }^{ 2 }

= 1 2 =\quad \boxed { \frac { 1 }{ 2 } }


Although this looks quite long, by this method, it can be done mentally in seconds.

Please upvote if you liked the solution.

sin 6 ( x ) + cos 6 ( x ) = ( sin 2 ( x ) ) 3 + ( cos 2 ( x ) ) 3 = ( sin 2 ( x ) + cos 2 ( x ) ) ( ( sin 2 ( x ) ) 2 + ( cos 2 ( x ) ) 2 sin 2 ( x ) cos 2 ( x ) ) = 1 ( ( ( sin 2 ( x ) ) 2 + ( cos 2 ( x ) ) 2 + 2 sin 2 ( x ) cos 2 ( x ) 3 sin 2 ( x ) cos 2 ( x ) ) ) = ( ( ( sin 2 ( x ) + cos 2 ( x ) ) 2 3 sin 2 ( x ) cos 2 ( x ) ) ) = 1 3 sin 2 ( x ) cos 2 ( x ) = 1 3 4 4 sin 2 ( x ) cos 2 ( x ) = 1 3 4 ( 2 sin ( x ) cos ( x ) ) 2 = 1 3 4 sin 2 ( 2 x ) \sin ^{ 6 }{ \left( x \right) } +\cos ^{ 6 }{ \left( x \right) } \\ ={ \left( \sin ^{ 2 }{ \left( x \right) } \right) }^{ 3 }+{ \left( \cos ^{ 2 }{ \left( x \right) } \right) }^{ 3 }\\ =\left( \sin ^{ 2 }{ \left( x \right) } +\cos ^{ 2 }{ \left( x \right) } \right) \left( { \left( \sin ^{ 2 }{ \left( x \right) } \right) }^{ 2 }+{ \left( \cos ^{ 2 }{ \left( x \right) } \right) }^{ 2 }-\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } \right) \\ =1\left( \left( { \left( \sin ^{ 2 }{ \left( x \right) } \right) }^{ 2 }+{ \left( \cos ^{ 2 }{ \left( x \right) } \right) }^{ 2 }+2\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } -3\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } \right) \right) \\ =\left( \left( { \left( \sin ^{ 2 }{ \left( x \right) } +\cos ^{ 2 }{ \left( x \right) } \right) }^{ 2 }-3\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } \right) \right) \\ =1-3\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } \\ =1-\frac { 3 }{ 4 } \cdot 4\sin ^{ 2 }{ \left( x \right) } \cos ^{ 2 }{ \left( x \right) } \\ =1-\frac { 3 }{ 4 } { \left( 2\sin { \left( x \right) } \cos { \left( x \right) } \right) }^{ 2 }\\ =1-\frac { 3 }{ 4 } \sin ^{ 2 }{ \left( 2x \right) }

Archit Boobna - 6 years, 1 month ago
Subhajit Ghosh
May 11, 2015

Squaring the given equation gives ( a 1 a 2 ) 2 = ( 1 6 ) 2 (a\sqrt{1 - a^{2}})^{2} = (\frac{1}{\sqrt{6}})^{2} a 2 a 4 = 1 6 a^{2} - a^{4} = \frac{1}{6}

Going back to the question, let's factor \[\begin{array}{} a^{6} + (1- a^{2})^{3} & = (a^{2})^{3} + (1- a^{2})^{3} \\& = (a^{2} + 1 - a^{2})((a^{2})^{2} - a^{2}(1 - a^{2}) + (1 - a^{2})^{2}) \\& = (a^{2} +1 - a^{2})(a^{4} - a^{2} +a^{4} +1 - 2a^{2} + a^{4}) \\& = (1)(3a^{4} - 3a^{2} + 1) \\& = (1)(3(-\frac{1}{6}) + 1) \qquad \left[ \because a^{2} - a^{4} = \frac{1}{6} \right] \\& = \boxed {\frac{1}{2} \rightarrow 0.5} \end{array}\]

Alex Delhumeau
Jun 21, 2015

Here is a proof without trigonometry: \text{Here is a proof without trigonometry: }

a 1 a 2 = 1 6 a 2 ( 1 a 2 ) = 1 6 a 2 a 4 = 1 6 0 = a 4 a 2 + 1 6 a\sqrt{1-a^2}=\frac{1}{\sqrt{6}} \\ a^2(1-a^2)=\frac{1}{6} \\ a^2-a^4=\frac{1}{6} \\ \color{#3D99F6}{0=a^4-a^2+ \frac{1}{6}}

Now let a 6 + ( 1 a 2 ) 3 = S , \text{Now let }a^6+(1-a^2)^3=S,

a 6 a 6 + 3 a 4 3 a 2 + 1 = S 3 a 4 3 a 2 + 1 = S a 4 a 2 + 1 3 = S 3 a^6-a^6+3a^4-3a^2+1=S \\ 3a^4-3a^2+1=S \\ \color{#D61F06}{a^4-a^2+\frac{1}{3}= \frac{S}{3}}

and subtract the first equation from the second one: \text{and subtract the first equation from the second one:}

a 4 a 2 + 1 3 a 4 + a 2 1 6 = S 3 0 1 6 = S 3 S = 1 2 \color{#D61F06}{a^4-a^2+\frac{1}{3}}-\color{#3D99F6}{a^4+a^2-\frac{1}{6}}=\color{#D61F06}{\frac{S}{3}}-\color{#3D99F6}{0} \\ \frac{1}{6} = \frac{S}{3} \\ S = \large{\boxed{\frac{1}{2}}}

Take a = sin θ a = \sin \theta

sin θ cos θ = 1 6 \sin \theta \cos \theta = \frac{1}{\sqrt{6}}

sin θ × cos θ = 1 6 \sin \theta \times \cos \theta = \frac{1}{\sqrt{6}}

sin 6 θ + cos 6 θ = ( sin 2 θ + cos 2 θ ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) \sin^6\theta + \cos^6\theta = (\sin^2\theta +\cos^2\theta)(\sin^4\theta - \sin^2\theta \cos^2\theta + \cos^4\theta)

= ( 1 ) ( ( sin 2 θ + cos 2 θ ) 2 2 sin 2 θ cos 2 θ sin 2 θ cos 2 θ ) = 1 3 sin 2 θ cos 2 θ = (1)((\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta \cos^2\theta - \sin^2\theta \cos^2\theta) = 1 - 3\sin^2\theta \cos^2\theta

a 6 + ( 1 a 2 ) 3 = ( 1 ) ( 1 3 × 1 6 ) = 0.5 \Rightarrow a^6 + (1-a^2)^3 = (1)(1 - 3\times \frac{1}{6}) = \boxed{\color{#D61F06}{0.5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...