Find the minimum value of for positive integers satisfying
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
3 7 x 2 − 1 3 x y + 7 y 2 = ∣ x − y ∣ + 1
Let x ≥ y . Cubing both sides
7 x 2 − 1 3 x y + 7 y 2 = ( x − y + 1 ) 3
7 x 2 − 1 3 x y + 7 y 2 = ( x − y ) 3 + 1 + 3 ( x − y ) . 1 ( x − y + 1 )
7 x 2 − 1 4 x y + 7 y 2 = ( x − y ) 3 + 1 + 3 ( x − y ) ( x − y + 1 ) − x y
7 ( x − y ) 2 = ( x − y ) 3 + 1 + 3 ( x − y ) ( x − y + 1 ) − x y
7 ( x − y ) 2 = ( x − y ) 3 + 1 + 3 ( x − y ) 2 + 3 ( x − y ) − x y
( x − y ) 3 − 4 ( x − y ) 2 + 3 ( x − y ) = x y − 1
Factoring L.H.S.
( x − y ) ( x − y − 1 ) ( x − y − 3 ) = x y − 1
Let consider x − y = z ⟹ y = x − z .putting this in this equation
z ( z − 1 ) ( z − 3 ) = x ( x − z ) − 1 x 2 − z . x − ( 1 + z ( z − 1 ) ( z − 3 ) ) = 0
As x is a positive integer so its discriminant will be a perfect square
D = z 2 + 4 + 4 z ( z − 1 ) ( z − 3 ) .For smallest solution put z = 0 .It will give x − y = 0 ⟹ x = y .
Putting this in the given question we get x = y = 1
For the second case x ≤ y will arise same solution
So,the smallest solution is ( x , y ) = ( 1 , 1 )