A number theory problem by Priyanshu Mishra

Find the minimum value of ( x + y ) (x + y) for positive integers x , y x, y satisfying

7 x 2 13 x y + 7 y 2 3 = x y + 1 \large\ \sqrt [ 3 ]{ 7{ x }^{ 2 } - 13xy + 7{ y }^{ 2 } } = |x - y| + 1 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Bose
Dec 16, 2016

7 x 2 13 x y + 7 y 2 3 = x y + 1 \sqrt [ 3 ]{ 7{ x }^{ 2 } - 13xy + 7{ y }^{ 2 } } = |x - y| + 1

Let x y x \geq y . Cubing both sides

7 x 2 13 x y + 7 y 2 = ( x y + 1 ) 3 7{ x }^{ 2 } - 13xy + 7{ y }^{ 2 }=(x-y+1)^3

7 x 2 13 x y + 7 y 2 = ( x y ) 3 + 1 + 3 ( x y ) . 1 ( x y + 1 ) 7{ x }^{ 2 } - 13xy + 7{ y }^{ 2 }=(x-y)^3 +1+ 3(x-y).1(x-y+1)

7 x 2 14 x y + 7 y 2 = ( x y ) 3 + 1 + 3 ( x y ) ( x y + 1 ) x y 7{ x }^{ 2 } - 14xy + 7{ y }^{ 2 }=(x-y)^3 +1 +3 (x-y)(x-y+1) -x y

7 ( x y ) 2 = ( x y ) 3 + 1 + 3 ( x y ) ( x y + 1 ) x y 7 (x-y)^2=(x-y)^3 +1 +3 (x-y)(x-y+1) -x y

7 ( x y ) 2 = ( x y ) 3 + 1 + 3 ( x y ) 2 + 3 ( x y ) x y 7 (x-y)^2=(x-y)^3 +1 +3 (x-y)^2+3(x-y) -x y

( x y ) 3 4 ( x y ) 2 + 3 ( x y ) = x y 1 (x-y)^3-4(x-y)^2+3 (x-y)=x y-1

Factoring L.H.S.

( x y ) ( x y 1 ) ( x y 3 ) = x y 1 (x-y)(x-y-1)(x-y-3)=x y-1

Let consider x y = z y = x z x-y=z \implies y=x-z .putting this in this equation

z ( z 1 ) ( z 3 ) = x ( x z ) 1 x 2 z . x ( 1 + z ( z 1 ) ( z 3 ) ) = 0 z(z-1)(z-3)=x (x-z) -1 \\ x^2 - z.x- (1+z(z-1)(z-3))=0

As x x is a positive integer so its discriminant will be a perfect square

D = z 2 + 4 + 4 z ( z 1 ) ( z 3 ) D= \sqrt{z^2+4+4z(z-1)(z-3)} .For smallest solution put z = 0 z=0 .It will give x y = 0 x = y x-y=0 \implies x=y .

Putting this in the given question we get x = y = 1 x=y=1

For the second case x y x \leq y will arise same solution

So,the smallest solution is ( x , y ) = ( 1 , 1 ) (x,y)=(1,1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...