Discreet lifestyle

Probability Level pending

Prove that: C ( n , k ) = P ( n , k ) r ! \displaystyle{C(n, k)=\frac{P(n, k)}{r!}}

Notation:

* C ( n , k ) C(n, k) is a Combination

* P ( n , k ) P(n, k) is a Permutation

n ! n ! ( n k ) ! = n ! k ! ( n k ) ! \frac{n!}{n!(n-k)!}=\frac{n!}{k!(n-k)!} n ! n ! ( k n ) ! = k ! n ! ( n k ) ! \frac{n!}{n!(k-n)!}=\frac{k!}{n!(n-k)!} n ! k ! ( n k ) ! = n ! k ! ( n k ) ! \frac{n!}{k!(n-k)!}=\frac{n!}{k!(n-k)!} n ! k ! ( n k ) ! = n ! n ! ( n k ) ! \frac{n!}{k!(n-k)!}=\frac{n!}{n!(n-k)!} n ! k ! ( n k ) ! = n ! k ! ( n k ) ! \frac{n!}{k!(n-k)!}=\frac{n!}{k!(n-k)!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The value of permutation is P ( n , k ) = n ! ( n k ) ! P(n, k) = \frac{n!}{(n-k)!} and also the combination is C ( n , k ) = n ! k ! ( n k ) ! C(n, k) = \frac{n!}{k!(n-k)!}

ADIOS!!! \large \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...