Displacement current in a capacitor

An air capacitor is charged with a constant electric current I = 1 A I = 1 \, \text {A} . What is the magnitude B | \vec B | of the induced magnetic field at the point P P midway between the metal plates at the radial distance r = 1 2 R r = \frac{1}{2} R from the center (point O O )? Specify your answer in units of microtesla ( μ \mathrm{\mu} T) with an accuracy of two decimal places.

The capacitor consists of two parallel, circular metal plates with radius R = 2 cm R = 2 \, \text{cm} at a distance d = 1 mm d = 1 \, \text{mm} from each other.

Hint: You might use Ampere's law × B = μ 0 j + μ 0 ε 0 E t \vec \nabla \times \vec B = \mu_0 \vec j + \mu_0 \varepsilon_0 \frac{\partial \vec E}{\partial t} with the current density j \vec j , the electric field E \vec E , the permeability μ 0 = 4 π 1 0 7 Vs / Am \mu_0 = 4 \pi \cdot 10^{-7}\, \text{Vs}/\text{Am} and the permittivity ε 0 8.85 1 0 12 As / Vm \varepsilon_0 \approx 8.85\cdot 10^{-12} \,\text{As}/\text{Vm} .


The answer is 5.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

According to Gauss' law, the homogeous electric field inside the capacitor is E d A = E π R 2 = Q ε 0 E = Q ε 0 π R 2 = Q 0 + I t ε 0 π R 2 \begin{aligned} \oint \vec E \cdot d\vec A &= E \cdot \pi R^2 = \frac{Q}{\varepsilon_0} \\ \Rightarrow \quad E &= \frac{Q}{\varepsilon_0 \pi R^2} = \frac{Q_0 + I \cdot t}{\varepsilon_0 \pi R^2} \end{aligned} with the initial charge Q 0 Q_0 at t = 0 t = 0 . Inside the capacitor there is no electric current ( j = 0 \vec j = 0 ), but there is temporal change E t \dfrac{\partial E}{\partial t} of the electric field (displacement current) thereby inducing a magnetic field. Since the capacitor has a rotatianal symmetry, the magnetic field has the form B ( r , t ) = B ( r , t ) ( sin ϕ cos ϕ ) = B ( r , t ) e ϕ \vec B(\vec r, t) = B(r,t) \left( \begin{array}{c} -\sin \phi \\ \cos \phi \end{array} \right) = B(r,t) \vec e_\phi with the unit vector e ϕ r \vec e_\phi \perp \vec r . Integrating Ampere's law over a circle with radius r r results ( × B ) d A = B d l = B 2 π r = μ 0 ε 0 E t d A = μ 0 ε 0 E t π r 2 B = 1 2 μ 0 ε 0 r E t = μ 0 I r 2 π R 2 \begin{aligned} \int (\vec \nabla \times \vec B) \cdot d\vec A &= \oint \vec B \cdot d\vec l = B \cdot 2 \pi r \\ &= \mu_0 \varepsilon_0 \int \frac{\partial \vec E}{\partial t} \cdot d\vec A = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \pi r^2 \\ \Rightarrow \quad B &= \frac{1}{2} \mu_0 \varepsilon_0 r \frac{\partial E}{\partial t} = \frac{\mu_0 I r}{2 \pi R^2} \end{aligned} Using the given numerical values, we get the result B = 4 π 1 0 7 1 1 0 2 2 π 4 1 0 4 T = 1 2 1 0 5 T = 5 μ T B = \frac{4\pi\cdot 10^{-7} \cdot 1 \cdot 10^{-2}}{2 \pi \cdot 4 \cdot 10^{-4}} \,\text{T} = \frac{1}{2} 10^{-5} \,\text{T} = 5 \,\mathrm{\mu T}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...