Algebra it

Algebra Level 4

If a a , b b and c c are in an arithmetic progression , then which of the given options is correct?

( a + b + c ) 2 + b ( a + c ) = 4 ( a b + b c ) + 3 b 2 (a+b+c)^2+b(a+c) =4(ab+bc)+3b^2 a 3 + b 3 + c 3 = a ( 4 a b + 4 b c + 3 c 2 ) + 18 a b c a^3+b^3+c^3 =a(4ab+4bc+3c^2)+18abc a 2 + b 2 + c 2 = a b + b c + c 2 + a b c a^2+b^2+c^2 =ab+bc+c^2+abc None of these choices ( a + b + c ) 2 + c ( a + b ) = 4 ( a b + a c ) + 8 c 3 (a+b+c)^2+c(a+b)=4(ab+ac)+8c^3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sparsh Sarode
May 26, 2016

Since, a , b , c a, b, c are in AP,

a + c = 2 b a+c=2b

a + b + c = 3 b a+b+c=3b (adding b on both the sides) \text{(adding b on both the sides)}

( a + b + c ) 2 = 3 b ( a + b + c ) (a+b+c)^2=3b(a+b+c) (multiplying by a+b+c on both the sides) \text{(multiplying by a+b+c on both the sides)}

( a + b + c ) 2 = 4 a b + 4 b c + 3 b 2 a b b c (a+b+c)^2=4ab+4bc+3b^2-ab-bc

( a + b + c ) 2 + b ( a + c ) = 4 ( a b + b c ) + 3 b 2 (a+b+c)^2+b(a+c)=4(ab+bc)+3b^2

You do not need the condition that a + b + c 0 a+b+c \neq 0 .

Taking a true equation (or any equation at all), we can multiply by sides by 0, and get a true equation of 0 = 0 0 = 0 .

Calvin Lin Staff - 5 years ago

Log in to reply

Oh! Yea.. It's not required.. I have edited it

Sparsh Sarode - 5 years ago

Log in to reply

Thanks. This looks much cleaner​ now :)

Calvin Lin Staff - 5 years ago

Yea calvins right

Rishi K - 5 years ago

What a nice fun problem!

James Wilson - 3 years, 8 months ago
Chew-Seong Cheong
May 26, 2016

By inspection, the solution cannot be the following two options because the degree of the LHS is 2 \color{#3D99F6}{2} while that of the RHS is 3 \color{#D61F06}{3} .

( a + b + c ) 2 + c ( a + b ) = 4 ( a b + a c ) + 8 c 3 a 2 + b 2 + c 2 = a b + b c + c 2 + a b c \begin{aligned} \color{#3D99F6}{(a+b+c)^2+c(a+b)} & = \color{#3D99F6}{4(ab+ac)}+\color{#D61F06}{8c^3} \\ \color{#3D99F6}{a^2+b^2+c^2} & = \color{#3D99F6}{ab+bc+c^2}+\color{#D61F06}{abc} \end{aligned}

So, I guessed it should be the following:

( a + b + c ) 2 + b ( a + c ) = 4 ( a b + b c ) + 3 b 2 For AP, we have a + c = 2 b ( 3 b ) 2 + b ( 2 b ) = 4 b ( 2 b ) + 3 b 2 9 b 2 + 2 b 2 = 8 b 2 + 3 b 2 11 b 2 11 b 2 \begin{aligned} (a+b+c)^2+b(a+c) & = 4(ab+bc)+3b^2 \quad \quad \small \color{#3D99F6}{\text{For AP, we have }a+c = 2b} \\ (3b)^2 + b(2b) & = 4b(2b) + 3b^2 \\ 9b^2 + 2b^2 & = 8b^2 + 3b^2 \\ \implies 11b^2 & \equiv 11b^2 \end{aligned}

Therefore, the answer is ( a + b + c ) 2 + b ( a + c ) = 4 ( a b + b c ) + 3 b 2 \boxed{(a+b+c)^2+b(a+c) = 4(ab+bc)+3b^2 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...