ζ ( 2 ) = π 2 6 ! \displaystyle\zeta(2) =\frac{\pi^2}{6}!

Calculus Level 3

Given that

r = 1 1 r 2 = π 2 6 , \sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{ \pi^2} { 6},

Evaluate the sum

r = 0 1 ( 2 r + 1 ) 2 . \displaystyle\sum_{r=0}^{\infty}\frac{1}{(2r+1)^2}.

Note: Do NOT use WolframAlpha.


The answer is 1.2337.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudeep Salgia
Apr 3, 2014

Consider the sum, ζ ( 2 ) = r = 1 1 r 2 \displaystyle \zeta(2) = \sum_{r=1}^\infty \frac{1}{r^2}

r = 1 1 r 2 = r = 0 1 ( 2 r + 1 ) 2 + r = 1 1 ( 2 r ) 2 \displaystyle \sum_{r=1}^\infty \frac{1}{r^2} = \sum_{r=0}^\infty \frac{1}{(2r+1)^2} + \sum_{r=1}^\infty \frac{1}{(2r)^2}

r = 1 1 r 2 = r = 0 1 ( 2 r + 1 ) 2 + 1 4 ( r = 1 1 r 2 ) \displaystyle \sum_{r=1}^\infty \frac{1}{r^2} = \sum_{r=0}^\infty \frac{1}{(2r+1)^2} + \frac{1}{4}\bigg(\sum_{r=1}^\infty \frac{1}{r^2}\bigg)

r = 0 1 ( 2 r + 1 ) 2 = 3 4 ( r = 1 1 r 2 ) \Rightarrow \displaystyle \sum_{r=0}^\infty \frac{1}{(2r+1)^2} = \frac{3}{4} \bigg(\sum_{r=1}^\infty \frac{1}{r^2}\bigg)

r = 0 1 ( 2 r + 1 ) 2 = 3 4 × ζ ( 2 ) \Rightarrow \displaystyle \sum_{r=0}^\infty \frac{1}{(2r+1)^2} = \frac{3}{4} \times\zeta(2)

r = 0 1 ( 2 r + 1 ) 2 = 3 4 × π 2 6 \Rightarrow \displaystyle \sum_{r=0}^\infty \frac{1}{(2r+1)^2} = \frac{3}{4} \times\frac{\pi^2}{6}

r = 0 1 ( 2 r + 1 ) 2 = π 2 8 = 1.2337 \Rightarrow \displaystyle \sum_{r=0}^\infty \frac{1}{(2r+1)^2} = \frac{\pi^2}{8} = \boxed{1.2337}

tell me about 1st equation

Sunil Singh - 7 years, 2 months ago

Log in to reply

It is the Riemann zeta function .

Sudeep Salgia - 7 years, 2 months ago

I did the same.

Carlos E. C. do Nascimento - 7 years, 2 months ago

the another method for this is Mitaz Leffer Form

Sunil Behal - 7 years, 2 months ago

Can any one tell me what if we make that substitution "X=2r+1" we will have the summation "1/x^2" from "1-->infinity" that result in "pi^2/6" ???

Salah Salah - 7 years, 1 month ago

I arrived to the solution exactly as Sudeep did, beautiful.. =0)

Axel Calles - 7 years, 1 month ago
Cody Johnson
Apr 9, 2014

I have a slightly harder generalization of this sum. Show that all non-trivial zeros of the complex interpolation of a function, say ζ ( s ) = n = 1 1 n s \zeta(s)=\sum_{n=1}^\infty\frac1{n^s} , occur where ( s ) = 1 2 \Re(s)=\frac12 .

Yes, just slightly harder ....

Pi Han Goh - 7 years, 2 months ago

Just a little bit harder. xD

Lucas Tell Marchi - 7 years, 2 months ago

seriesSum(1/(r^2) ,r,1,infinity) = pi^2 /6. = 1+1/4+1/9+1/16+1/25+1/36+1/49+...... Since 2r+1 is odd, seriesSum(1/(2r+1)^2 ,r,0, infinity) = 1+1/9+1/25+1/49+....... = pi^2/6 - 1/4-1/16-1/36-1/64-......= = pi^2 /6 -seriesSum(1/(2r)^2 ,r,1,infinity) = pi^2 /6 -1/4 * seriesSum(1/r^2 ,r,1,infinity) = pi^2 /6 - pi^2 /24 = pi^2 /8 =1.2337005501362.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...