John travels by car daily to reach his office. If John increases his speed by 10 km/hr, his travel time is reduced by 1 hour. If John decreases his speed by 20 km/hr, his travel time increases by 8 hours. At what speed John needs to travel if he needs to reach his office by 2 hours?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If John drives at his usual speed of v for a distance of d, he reaches his office at t , or simply put, d/v=t (( equation 1)
If he increases his speed by 10, he arrives one hour early. Simply put, d/(v+10)=t-1 ( Equation 2)
If he reduces his speed by 20, he is late by 8 hrs. Simply put, d/(v-20)=t+8 ( Equation 3)
Solve this simultaneous equation. d=120 km, t=4 hours and v=30 km/h