Distinct Reals

Algebra Level 2

Let a a and b b be 2 distinct real numbers such that a 2 + 3 a + 1 = b 2 + 3 b + 1 = 0 a^2+3a+1=b^2+3b+1=0 . Find the value of a b + b a \frac{a}{b}+\frac{b}{a} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Victor Loh
Oct 18, 2014

Note that a b + b a \frac{a}{b}+\frac{b}{a} = a 2 a b + b 2 a b =\frac{a^2}{ab}+\frac{b^2}{ab} = a 2 + b 2 a b =\frac{a^2+b^2}{ab} = ( a + b ) 2 2 a b a b . =\frac{(a+b)^2-2ab}{ab}. For a quadratic equation A x 2 + B x + C = 0 , Ax^2+Bx+C=0, where A A , B B and C C are real numbers and A 0 , A\neq 0, Vieta's Theorem states that Sum of roots = B A \text{Sum of roots} = -\frac{B}{A} and Product of roots = C A . \text{Product of roots} = \frac{C}{A}. It thus follows that a + b = 3 1 = 3 a+b=-\frac{3}{1}=-3 and a b = 1 1 = 1. ab=\frac{1}{1}=1. Hence, ( a + b ) 2 2 a b a b \frac{(a+b)^2-2ab}{ab} = ( 3 ) 2 2 ( 1 ) 1 =\frac{(-3)^2-2(1)}{1} = 9 2 = 7 , =9-2=\boxed{7}, and we are done. _{\square}

Nice application of Vieta

Krishna Ar - 6 years, 7 months ago

Well explained solution! I solved the problem the same exact way :D

Fariz Kabir - 4 years, 9 months ago

but ab = -4 not 1

Robin Bacchus - 9 months, 3 weeks ago

Well explained!

Anik Mandal - 6 years, 7 months ago

but if we put a=-4 and b=1 it satisfy the equation but my answer was wrong

kanishk arora - 6 years, 5 months ago

Log in to reply

It's because (a^2+3a+1=0).

lucas maekawa - 5 years, 5 months ago

@kanishkarora, note that a 2 + 3 a + 1 = b 2 + 3 b + 1 = 0. a^2+3a+1=b^2+3b+1=0.

If we go about solving this the normal way,

a 2 + 3 a + 1 = b 2 + 3 b + 1 a^2+3a+1=b^2+3b+1

a 2 b 2 + 3 ( a b ) = 0 a^2-b^2+3(a-b)=0

( a + b ) ( a b ) + 3 ( a b ) = 0 (a+b)(a-b)+3(a-b)=0

( a + b + 3 ) ( a b ) = 0 (a+b+3)(a-b)=0

Then, we get

a + b = 3 a+b=-3 and/or a = b . a=b. The second case is impossible as a a and b b are distinct reals.

That is why any integers that sum to 3 -3 give you equal values on both sides for a 2 + 3 a + 1 = b 2 + 3 b + 1. a^2+3a+1=b^2+3b+1.

However, none of those integer combinations will satisfy a 2 + 3 a + 1 = b 2 + 3 b + 1 = 0 a^2+3a+1=b^2+3b+1=0 as there are no integer solutions to x 2 + 3 x + 1 = 0 x^2+3x+1=0 .

Krish Shah - 1 year, 1 month ago
Soumo Mukherjee
Jan 1, 2015

Given a 2 + 3 a + 1 = 0 \displaystyle { a }^{ 2 }+3a+1=0 & b 2 + 3 b + 1 = 0 \displaystyle { b }^{ 2 }+3b+1=0 . Clearly a and b are roots of the equation x 2 + 3 x + 1 = 0 \displaystyle { x }^{ 2 }+3x+1=0 .

a + b = 3 & a b = 1 \therefore a+b=-3\quad \& \quad ab=1 We need to find a b + b a = a 2 + b 2 a b = ( a + b ) 2 2 a b a b \cfrac { a }{ b } +\cfrac { b }{ a } =\cfrac { { a }^{ 2 }+{ b }^{ 2 } }{ ab } =\cfrac { { \left( a+b \right) }^{ 2 }-2ab }{ ab }

Substituting the values we get ( a + b ) 2 2 a b a b = ( 3 ) 2 2 1 = 7 1 \cfrac { { \left( a+b \right) }^{ 2 }-2ab }{ ab } =\cfrac { { \left( -3 \right) }^{ 2 }-2 }{ 1 } =\cfrac { 7 }{ 1 } Hence the answer.

Jordi Pomada
Jan 25, 2015

Since the equations given are the same one but with different variables we can deduce that a a and b b are the two roots of the equation x 2 + 3 x + 1 = 0 x^{2}+3x+1=0 , which are x + = 3 + 5 2 x_{+}=\frac{-3+\sqrt{5}}{2} x = 3 5 2 x_{-}=\frac{-3-\sqrt{5}}{2}

Now we take x + = a x_{+}=a and x = b x_{-}=b and begin to operate this way:

a b + b a = \frac{a}{b}+\frac{b}{a}= = 3 + 5 2 3 5 2 + 3 5 2 3 + 5 2 = =\frac{\frac{-3+\sqrt{5}}{2}}{\frac{-3-\sqrt{5}}{2}}+\frac{\frac{-3-\sqrt{5}}{2}}{\frac{-3+\sqrt{5}}{2}}= = 3 + 5 3 5 + 3 5 3 + 5 = =\frac{-3+\sqrt{5}}{-3-\sqrt{5}}+\frac{-3-\sqrt{5}}{-3+\sqrt{5}}= = ( 3 + 5 ) ( 3 + 5 ) + ( 3 5 ) ( 3 5 ) ( 3 5 ) ( 3 + 5 ) = =\frac{(-3+\sqrt{5})(-3+\sqrt{5})+(-3-\sqrt{5})(-3-\sqrt{5})}{(-3-\sqrt{5})(-3+\sqrt{5})}= = 9 + 5 6 5 + 9 + 5 + 6 5 9 5 = 28 4 = 7 =\frac{9+5-6\sqrt{5}+9+5+6\sqrt{5}}{9-5}=\frac{28}{4}=\boxed{7}

I did the same way.

Niranjan Khanderia - 2 years, 11 months ago
Jee Su Bean
Oct 18, 2014

x^2+3x+1=0 a+b=-3 ab=1 (a/b)+(b/a)=(a^2+b^2)/ab={(a+b)^2-2ab}/ab=9-2=7

a+b=-3, (-3)^2-2=7

Elisha Ayanda SIBANDA - 7 months ago

a^2+3a+1=b^2+3b+1 a^2-b^2=-3(a-b) a+b=-3 ((a+b)^2-2ab)÷ab ((-3)^2-2(1))÷1 =7 Take note ab=1 since it is common on both the side with the a's and also at the b's.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...