Find the value of x 3 - 8 y 3 - 36xy - 216 , if x = 2y + 6
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Its easy the solution......x^3-8y^3=x^3-(2y)^3 =(x-2y) (x^2+4y^2+2xy) =6(x^2+4y^2+2xy)=6x^2+24y^2+12xy as(x-2y=6) given so acc. to question:x^3 -8y^3- 36xy - 216=6x^2+24y^2+12xy- 36xy - 216= 6[x^2+4y^2-4xy-36]=6[(x+2y)^2-36]=6[36-36]=0
First find an expression with x = 2 y + 6 as a root, you do it by rearranging the expression into:
x − 6 = 2 y
then we cube both sides:
( x − 6 ) 3 = ( 2 y ) 3
x 3 − 1 8 x 2 + 1 0 8 x − 2 1 6 = 8 y 3
Make one side zero:
8 y 3 − x 3 + 1 8 x 2 − 1 0 8 x + 2 1 6 = 0
since the above expression is zero, we can add it to the expression we're solving:
( x 3 − 8 y 3 − 3 6 x y − 2 1 6 ) + ( 8 y 3 − x 3 + 1 8 x 2 − 1 0 8 x + 2 1 6 ) = 1 8 x 2 − 1 0 8 x − 3 6 x y
factor out 1 8 x
1 8 x ( x − 2 y − 6 )
notice that x − 6 = 2 y ⇔ x − 2 y − 6 = 0
substitute that and you get the answer 0
x^3-8y^3=x^3-(2y)^3
=(x-2y) (x^2+4y^2+2xy)
=6(x^2+4y^2+2xy)=6x^2+24y^2+12xy as(x-2y=6) given
so acc. to question:x^3 -8y^3- 36xy - 216=6x^2+24y^2+12xy- 36xy - 216=
6[x^2+4y^2-4xy-36]=6[(x+2y)^2-36]=6[36-36]=0
Problem Loading...
Note Loading...
Set Loading...
Take third power of both side of x-2y=6...............(1)
That is
(x-2y)^3=6^3
x^3-8 y^3-3 x*2y(x-2y)=216
x^3-8y^3-6xy*6=216 (putting (1) value)
So
x^3-8y^3-36xy-216=0 (taking everything on left side)
So answer is 0