Dive

Calculus Level 5

0 a ln ( x ) ln ( a x ) d x \color{#3D99F6}\large \int_0^a \ln(x)\ln(a-x)\, dx

The minimum value of the given expression occurs at a = e π N a=e^{\frac{\pi}{\sqrt{N}}} . Find N N .


  • See a very similar question here


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 22, 2018

Note that 0 1 ln t ln ( 1 t ) d t = n = 1 1 n 0 1 t n ln t d t = n = 1 1 n ( n + 1 ) 2 = n = 1 ( 1 n 1 n + 1 1 ( n + 1 ) 2 ) = 1 n = 2 1 n 2 = 2 1 6 π 2 \begin{aligned} \int_0^1 \ln t \, \ln(1-t)\,dt & = \; -\sum_{n=1}^\infty \tfrac{1}{n}\int_0^1 t^n \ln t\,dt \; = \; \sum_{n=1}^\infty \frac{1}{n(n+1)^2} \; = \; \sum_{n=1}^\infty \left( \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2}\right) \\ & = \; 1 - \sum_{n=2}^\infty \frac{1}{n^2} \; = \; 2 - \tfrac16\pi^2 \end{aligned} and hence F ( a ) = 0 a ln x ln ( a x ) d x = a 0 1 ln ( a t ) ln ( a ( 1 t ) ) d t = a 0 1 [ ln a + ln t ] [ ln a + ln ( 1 t ) ] d t = a [ ( ln a ) 2 + ( ln a ) 0 1 ln t d t + ( ln a ) 0 1 ln ( 1 t ) d t + 0 1 ln t ln ( 1 t ) d t ] = a [ ( ln a ) 2 2 ln a + 2 1 6 π 2 ] \begin{aligned} F(a) & = \; \int_0^a \ln x \, \ln(a-x)\,dx \; = \; a\int_0^1 \ln(at)\, \ln(a(1-t))\,dt \; = \; a\int_0^1[\ln a + \ln t][\ln a + \ln(1-t)]\,dt \\ & = \; a\left[(\ln a)^2 + (\ln a)\int_0^1 \ln t\,dt + (\ln a)\int_0^1 \ln(1-t)\,dt + \int_0^1 \ln t\,\ln(1-t)\,dt\right] \; = \; a\left[(\ln a)^2 - 2\ln a + 2 - \tfrac16\pi^2\right] \end{aligned} which makes F ( a ) = ( ln a ) 2 1 6 π 2 F'(a) \; = \; (\ln a)^2 - \tfrac16\pi^2 and so the turning point of F F occurs when a = e π 6 a = e^{\frac{\pi}{\sqrt{6}}} , making the answer 6 \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...