If this above relation holds true , where are positive integers and are co-prime.
Then find the value of
Notation: denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 ∞ x 3 lo g ( 1 + e x ) − x 4 d x = ∫ 0 ∞ x 3 ( lo g ( 1 + e x ) − x ) d x = ∫ 0 ∞ x 3 ( lo g ( e x 1 + e x ) ) d x = ∫ 0 ∞ x 3 lo g ( 1 + e − x ) d x = n = 1 ∑ ∞ ( − 1 ) n + 1 n 1 ∫ 0 ∞ x 3 e − n x d x Take n x = u , the Integral becomes n = 1 ∑ ∞ ( − 1 ) n + 1 n 5 1 ∫ 0 ∞ u 3 e − u d u = n = 1 ∑ ∞ ( − 1 ) n + 1 n 5 1 Γ ( 4 ) = 3 ! ( 1 5 1 − 2 5 1 + 3 5 1 − ⋯ ) = 3 ! . 1 6 1 5 ζ ( 5 ) = 8 4 5 ζ ( 5 )
N o t e : 1 + 2 5 1 + 3 5 1 + 4 5 1 + . . . = ζ ( 5 ) 1 − 2 5 1 + 3 5 1 − 4 5 1 + . . = S And S + ζ ( 5 ) = 2 ( 1 5 1 + 3 5 1 + 5 5 1 + . . . ) = 2 n = 0 ∑ ∞ ( 2 n + 1 ) 5 1 Generally , n = 0 ∑ ∞ ( 2 n + 1 ) 5 1 + n = 1 ∑ ∞ ( 2 n ) 5 1 = n = 1 ∑ ∞ n 5 1 So, 2 n = 0 ∑ ∞ ( 2 n + 1 ) 5 1 = 2 ζ ( 5 ) ( 1 − 2 5 1 ) = S + ζ ( 5 ) S = ζ ( 5 ) ( 1 − 2 4 1 ) = 1 6 1 5 ζ ( 5 ) Answer is 4 5 ( 8 − 5 ) = 1 3 5