Divergent looking but....

Calculus Level 5

0 ( x 3 ln ( 1 + e x ) x 4 ) d x = a b ζ ( s ) \int_0^∞ \left(x^3 \ln(1+e^x)-x^4 \right) dx = \frac ab \zeta{(s)}\ If this above relation holds true , where a , b , s a,b,s are positive integers and a , b a ,b are co-prime.

Then find the value of a ( b s ) a(b-s)

Notation: ζ ( ) \zeta (\cdot) denotes the Riemann zeta function .


The answer is 135.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Dec 13, 2020

0 x 3 log ( 1 + e x ) x 4 d x = 0 x 3 ( log ( 1 + e x ) x ) d x \int_0^∞ x^3 \log(1+e^x) -x^4 dx = \int_0^∞ x^3 (\log(1+e^x)-x) dx = 0 x 3 ( log ( 1 + e x e x ) ) d x = 0 x 3 log ( 1 + e x ) d x = \int_0^∞ x^3 (\log(\frac{1+e^x}{e^x})) dx = \int_0^∞ x^3 \log(1+e^{-x}) dx = n = 1 ( 1 ) n + 1 1 n 0 x 3 e n x d x = \sum_{n=1}^∞ (-1)^{n+1} \frac 1n \int_0^∞ x^3 e^{-nx} dx Take n x = u nx=u , the Integral becomes n = 1 ( 1 ) n + 1 1 n 5 0 u 3 e u d u = n = 1 ( 1 ) n + 1 1 n 5 Γ ( 4 ) \sum_{n=1}^∞ (-1)^{n+1} \frac{1}{n^5} \int_0^∞ u^3 e^{-u} du = \sum_{n=1}^∞ (-1)^{n+1} \frac{1}{n^5} \Gamma{(4)} = 3 ! ( 1 1 5 1 2 5 + 1 3 5 ) =3!( \frac{1}{1^5} -\frac{ 1} {2^5} +\frac {1 }{3^5} -\cdots) = 3 ! . 15 16 ζ ( 5 ) = 45 8 ζ ( 5 ) =\color{#E81990} \boxed{3!.\frac{15}{16} \zeta{(5)} = \frac{45}{8} \zeta{(5)}}

N o t e : \boldsymbol{{Note}}\:: 1 + 1 2 5 + 1 3 5 + 1 4 5 + . . . = ζ ( 5 ) \mathrm{1}\boldsymbol{+}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\boldsymbol{+}\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }\boldsymbol{+}\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }\boldsymbol{+}...\boldsymbol{=}\zeta\left(\mathrm{5}\right) 1 1 2 5 + 1 3 5 1 4 5 + . . = S \mathrm{1}\boldsymbol{-}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\boldsymbol{+}\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }\boldsymbol{-}\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }\boldsymbol{+}..\boldsymbol{=}{S}\:\:\: And S + ζ ( 5 ) = 2 ( 1 1 5 + 1 3 5 + 1 5 5 + . . . ) = 2 n = 0 1 ( 2 n + 1 ) 5 S+\zeta{(5)} = 2(\frac{1}{1^5} + \frac{1}{3^5} +\frac{1}{5^5} +...) = 2\sum_{n=0}^∞\frac{1}{(2n+1)^5} Generally , n = 0 1 ( 2 n + 1 ) 5 + n = 1 1 ( 2 n ) 5 = n = 1 1 n 5 \sum_{n=0}^∞ \frac{1}{(2n+1)^5} +\sum_{n=1}^∞ \frac{1}{(2n)^5} = \sum_{n=1}^∞\frac{1}{n^5} So, 2 n = 0 1 ( 2 n + 1 ) 5 = 2 ζ ( 5 ) ( 1 1 2 5 ) = S + ζ ( 5 ) 2\sum_{n=0}^∞ \frac{1}{(2n+1)^{5}} =2 \zeta{(5)}(1-\frac{1}{2^5}) = S+\zeta{(5)} S = ζ ( 5 ) ( 1 1 2 4 ) = 15 16 ζ ( 5 ) S= \zeta{(5)} (1-\frac{1}{2^4}) = \boxed{\frac{15}{16}\zeta{(5)}} Answer is 45 ( 8 5 ) = 135 \color{#20A900}45(8-5) =135

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...