Divergent Series?

Calculus Level 2

k = 1 k 2 2 k = ? \large\sum_{k=1}^{\infty} \dfrac{k^2}{2^k} = \, ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 21, 2016

Note that S = k = 1 k 2 2 k = k = 0 k 2 2 k \displaystyle S = \sum_{k=1}^\infty \frac {k^2}{2^k} = \sum_{k=\color{#D61F06}{0}}^\infty \frac {k^2}{2^k} . Then, we have

S = k = 1 k 2 2 k = k = 0 ( k + 1 ) 2 2 k + 1 = 1 2 k = 0 k 2 + 2 k + 1 2 k = 1 2 k = 0 k 2 2 k + k = 0 k 2 k + 1 2 k = 0 1 2 k See Note = 1 2 S + 2 + 1 2 1 1 1 2 1 2 S = 2 + 1 S = 6 \begin{aligned} S & = \sum_{k=1}^\infty \frac {k^2}{2^k} \\ & = \sum_{k=\color{#3D99F6}{0}}^\infty \frac {({\color{#3D99F6}{k+1}})^2}{2^{\color{#3D99F6}{k+1}}} \\ & = \frac 12 \sum_{k=0}^\infty \frac {k^2+2k+1}{2^k} \\ & = \frac 12 \sum_{k=0}^\infty \frac {k^2}{2^k} + {\color{#3D99F6}\sum_{k=0}^\infty \frac k{2^k}} + \frac 12 \sum_{k=0}^\infty \frac 1{2^k} & \small \color{#3D99F6}{\text{See Note}} \\ & = \frac 12 S + {\color{#3D99F6}2} + \frac 12 \cdot \frac 1{1-\frac 12} \\ \implies \frac 12 S & = 2 + 1 \\ \implies S & = \boxed{6} \end{aligned}


Note:

Using the similar method:

S 1 = k = 0 k 2 k = k = 1 k 2 k = k = 0 k + 1 2 k + 1 = 1 2 k = 0 k 2 k + 1 2 k = 0 1 2 k = 1 2 S 1 + 1 2 ( 1 1 1 2 ) 1 2 S 1 = 1 S 1 = 2 \begin{aligned} S_1 & = \sum_{k=0}^\infty \frac k{2^k} \\ & = \sum_{k={\color{#D61F06}1}}^\infty \frac k{2^k} \\ & = \sum_{k={\color{#3D99F6}0}}^\infty \frac {\color{#3D99F6}k+1}{2^{\color{#3D99F6}k+1}} \\ & = \frac 12 \sum_{k=0}^\infty \frac k{2^k} + \frac 12 \sum_{k=0}^\infty \frac 1{2^k} \\ & = \frac 12 S_1 + \frac 12 \left(\frac 1{1-\frac 12}\right) \\ \implies \frac 12 S_1 & = 1 \\ \implies S_1 & = 2 \end{aligned}

Wow who would think of adding a zero... as the first value?? Beautiful solution!

William Nathanael Supriadi - 4 years, 6 months ago

Nice one... :)

Sparsh Sarode - 4 years, 7 months ago

beautiful!

Peter Macgregor - 4 years, 7 months ago
Bloons Qoth
Oct 21, 2016

An algebraic approach, Let

S = k = 1 k 2 2 k S=\displaystyle\sum_{k=1}^{\infty} \dfrac{k^2}{2^k}

d a n g \color{#FFFFFF}{dang}

S = 1 2 2 1 + 2 2 2 2 + 3 2 2 3 + 4 2 2 4 + 5 2 2 5 + 6 2 2 6 + S= \dfrac{1^2}{2^1}+\dfrac{2^2}{2^2}+\dfrac{3^2}{2^3}+\dfrac{4^2}{2^4}+\dfrac{5^2}{2^5}+\dfrac{6^2}{2^6}+\cdots

d a n g \color{#FFFFFF}{dang}

2 S = 1 + 2 2 2 1 + 3 2 2 2 + 4 2 2 3 + 5 2 2 4 + 6 2 2 5 + S = ( 1 2 2 1 + 2 2 2 2 + 3 2 2 3 + 4 2 2 4 + 5 2 2 5 + ) \begin{aligned} 2S & = 1+\dfrac{2^2}{2^1}+\dfrac{3^2}{2^2}+\dfrac{4^2}{2^3}+\dfrac{5^2}{2^4}+\dfrac{6^2}{2^5}+ \cdots \\ -S & \underline{=-\bigg(\dfrac{1^2}{2^1}+\dfrac{2^2}{2^2}+\dfrac{3^2}{2^3}+\dfrac{4^2}{2^4}+\dfrac{5^2}{2^5}+\cdots\bigg)} \end{aligned}

S = 1 + 2 2 1 1 2 1 + 3 2 2 2 2 2 + 4 2 3 2 2 3 + 5 2 4 2 2 4 + 6 2 5 2 2 5 + S=1+\dfrac{2^2-1^1}{2^1}+\dfrac{3^2-2^2}{2^2}+\dfrac{4^2-3^2}{2^3}+\dfrac{5^2-4^2}{2^4}+\dfrac{6^2-5^2}{2^5}+\cdots

d a n g \color{#FFFFFF}{dang}

S = 1 + ( 2 + 1 ) ( 2 1 ) 2 1 + ( 3 + 2 ) ( 3 2 ) 2 2 + ( 4 + 3 ) ( 4 3 ) 2 3 + ( 5 + 4 ) ( 5 4 ) 2 4 + ( 6 + 5 ) ( 6 5 ) 2 5 + S=1+\dfrac{(2+1)(2-1)}{2^1}+\dfrac{(3+2)(3-2)}{2^2}+\dfrac{(4+3)(4-3)}{2^3}+\dfrac{(5+4)(5-4)}{2^4}+\dfrac{(6+5)(6-5)}{2^5}+\cdots

S = 1 + 3 2 1 + 5 2 2 + 7 2 3 + 9 2 4 + 11 2 5 + S=1+\color{#D61F06}{\dfrac{3}{2^1}+\dfrac{5}{2^2}+\dfrac{7}{2^3}+\dfrac{9}{2^4}+\dfrac{11}{2^5}+\cdots}

d a n g \color{#FFFFFF}{dang}

K = 3 2 1 + 5 2 2 + 7 2 3 + 9 2 4 + 11 2 5 + \qquad\color{#D61F06}{K=\dfrac{3}{2^1}+\dfrac{5}{2^2}+\dfrac{7}{2^3}+\dfrac{9}{2^4}+\dfrac{11}{2^5}+\cdots}

2 K = 3 + 5 2 1 + 7 2 2 + 9 2 3 + 11 2 4 + \qquad\color{#D61F06}{2K=3+\dfrac{5}{2^1}+\dfrac{7}{2^2}+\dfrac{9}{2^3}+\dfrac{11}{2^4}+\cdots}

K ( 3 2 1 + 5 2 2 + 7 2 3 + 9 2 4 + ) \qquad\color{#D61F06}{\underline{-K \;\; -\bigg(\dfrac{3}{2^1}+\dfrac{5}{2^2}+\dfrac{7}{2^3}+\dfrac{9}{2^4}+\cdots\bigg)}}

K = 3 + ( 1 + 1 2 + 1 4 + 1 8 + ) \qquad\color{#D61F06}{K=3+}\color{#3D99F6}{\big(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots\big)}

K = 3 + 2 \qquad\color{#D61F06}{K=3+}\,\color{#3D99F6}{2}

S = 1 + 5 S=1+5

S = 6 S=\huge\boxed{6}

Also this question is polylogarithm for s=-2 and z=1/2.

Akira Kato - 4 years, 7 months ago
Ramiel To-ong
Nov 28, 2016

very nice solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...