This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow who would think of adding a zero... as the first value?? Beautiful solution!
Nice one... :)
beautiful!
An algebraic approach, Let
S = k = 1 ∑ ∞ 2 k k 2
d a n g
S = 2 1 1 2 + 2 2 2 2 + 2 3 3 2 + 2 4 4 2 + 2 5 5 2 + 2 6 6 2 + ⋯
d a n g
2 S − S = 1 + 2 1 2 2 + 2 2 3 2 + 2 3 4 2 + 2 4 5 2 + 2 5 6 2 + ⋯ = − ( 2 1 1 2 + 2 2 2 2 + 2 3 3 2 + 2 4 4 2 + 2 5 5 2 + ⋯ )
S = 1 + 2 1 2 2 − 1 1 + 2 2 3 2 − 2 2 + 2 3 4 2 − 3 2 + 2 4 5 2 − 4 2 + 2 5 6 2 − 5 2 + ⋯
d a n g
S = 1 + 2 1 ( 2 + 1 ) ( 2 − 1 ) + 2 2 ( 3 + 2 ) ( 3 − 2 ) + 2 3 ( 4 + 3 ) ( 4 − 3 ) + 2 4 ( 5 + 4 ) ( 5 − 4 ) + 2 5 ( 6 + 5 ) ( 6 − 5 ) + ⋯
S = 1 + 2 1 3 + 2 2 5 + 2 3 7 + 2 4 9 + 2 5 1 1 + ⋯
d a n g
K = 2 1 3 + 2 2 5 + 2 3 7 + 2 4 9 + 2 5 1 1 + ⋯
2 K = 3 + 2 1 5 + 2 2 7 + 2 3 9 + 2 4 1 1 + ⋯
− K − ( 2 1 3 + 2 2 5 + 2 3 7 + 2 4 9 + ⋯ )
K = 3 + ( 1 + 2 1 + 4 1 + 8 1 + ⋯ )
K = 3 + 2
S = 1 + 5
S = 6
Also this question is polylogarithm for s=-2 and z=1/2.
Problem Loading...
Note Loading...
Set Loading...
Note that S = k = 1 ∑ ∞ 2 k k 2 = k = 0 ∑ ∞ 2 k k 2 . Then, we have
S ⟹ 2 1 S ⟹ S = k = 1 ∑ ∞ 2 k k 2 = k = 0 ∑ ∞ 2 k + 1 ( k + 1 ) 2 = 2 1 k = 0 ∑ ∞ 2 k k 2 + 2 k + 1 = 2 1 k = 0 ∑ ∞ 2 k k 2 + k = 0 ∑ ∞ 2 k k + 2 1 k = 0 ∑ ∞ 2 k 1 = 2 1 S + 2 + 2 1 ⋅ 1 − 2 1 1 = 2 + 1 = 6 See Note
Note:
Using the similar method:
S 1 ⟹ 2 1 S 1 ⟹ S 1 = k = 0 ∑ ∞ 2 k k = k = 1 ∑ ∞ 2 k k = k = 0 ∑ ∞ 2 k + 1 k + 1 = 2 1 k = 0 ∑ ∞ 2 k k + 2 1 k = 0 ∑ ∞ 2 k 1 = 2 1 S 1 + 2 1 ( 1 − 2 1 1 ) = 1 = 2