Divide and Rule

Number Theory Level pending

Let x 1 , x 2 , , x n x_1,x_2,\cdots,x_n be integers such that

( x i 3 ) ( x i 3 3 ) , i = 1 , 2 , , n (x_i-3)|(x_i^3-3) , \forall i=1,2,\cdots,n

Find i = 1 n x i \sum_{i=1}^n x_i .


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let y = x 3 y=x-3 . Then the problem is equivalent to

( ( y + 3 ) 3 3 ) m o d y = ( y ( y 2 + 9 y + 27 ) + 27 3 ) m o d y = 0 ((y+3)^3-3) \mod y = \left(y(y^2+9y+27)+27-3\right) \mod y = 0

24 m o d y = 0 24 \mod y = 0

Or, y y divides 24. Possible choices are y = ± 24 , ± 12 , ± 8 , ± 6 , ± 4 , ± 3 , ± 2 , ± 1 y=\pm 24, \pm 12, \pm 8, \pm 6, \pm 4, \pm 3, \pm 2, \pm 1 .

Consequently, x = y + 3 = 21 , 27 , 9 , 15 , 5 , 11 , 3 , 9 , 1 , 7 , 0 , 6 , 1 , 5 , 2 , 4 x=y+3=-21,27,-9,15,-5,11,-3,9,-1,7,0,6,1,5,2,4 .

Thus, the required sum is 21 + 27 9 + 15 5 + 11 3 + 9 1 + 7 + 0 + 6 + 1 + 5 + 2 + 4 = 48 -21+27-9+15-5+11-3+9-1+7+0+6+1+5+2+4=\boxed{48}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...