Divide by 1-10

x = 1 10 y x = I \sum _{ x=1 }^{ 10 }{ \frac { y }{ x } } =I

If y 1 { y }_{ 1 } is the smallest positive integer y y value that satisfies the equation above, y 2 { y }_{ 2 } is the second smallest, etc., then what is the value of y 1 + y 2 + y 3 . . . + y 100 { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }...+{ y }_{ 100 } if I I is a positive integer?


The answer is 12726000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Stephen Mellor
Feb 18, 2018

Lowest common multiple { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } = 2 3 3 2 5 7 = 2520 \text{Lowest common multiple} \{1,2,3,4,5,6,7,8,9,10\} = 2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520 y 1 = 2520 1 \implies y_1 = 2520 \cdot 1 y 2 = 2520 2 y_2 = 2520 \cdot 2 \vdots y n = 2520 n y_n = 2520 \cdot n y 1 00 = 2520 100 y_100 = 2520 \cdot 100

y 1 + y 2 + + y 100 = 2520 1 + 2520 2 + + 2520 100 y_1 + y_2 + \ldots + y_{100} = 2520 \cdot 1 + 2520 \cdot 2 + \ldots + 2520 \cdot 100 y 1 + y 2 + + y 100 = 2520 ( 1 + 2 + 3 + + 100 ) y_1 + y_2 + \ldots + y_{100} = 2520 \cdot (1 + 2 + 3 + \ldots + 100) y 1 + y 2 + + y 100 = 2520 100 101 2 y_1 + y_2 + \ldots + y_{100} = 2520 \cdot \frac{100 \cdot 101}{2} y 1 + y 2 + + y 100 = 2520 5050 y_1 + y_2 + \ldots + y_{100} = 2520 \cdot 5050 y 1 + y 2 + + y 100 = 12 , 726 , 000 y_1 + y_2 + \ldots + y_{100} = 12,726,000

There's a slight problem here - it's not quite correct to look at L C M ( 1 , , 10 ) LCM(1,\ldots ,10) . It happens to work in this case, but it doesn't, for example, with the sum going up to 6 6 .

The issue is the reduced form of the n t h n^{th} harmonic number. We have H 10 = 1 1 + 1 2 + + 1 10 = 7381 2520 H_{10}=\frac11+\frac12+\cdots +\frac{1}{10}=\frac{7381}{2520} . However, H 6 = 49 20 H_6=\frac{49}{20} (in this case the fraction cancels down and the denominator is not the same as the LCM).

Chris Lewis - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...