Divided incenters

Geometry Level 3

Let D D be an interior point of the side B C BC of a triangle A B C ABC . Let I 1 I_1 and I 2 I_2 be the incentres of triangles A B D ABD and A C D ACD respectively. Let A I 1 AI_1 and A I 2 AI_2 meet B C BC in E E and F F respectively. If B I 1 E = 6 0 o \angle BI_1E = 60^o , what is the measure of C I 2 F \angle CI_2F in degrees?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Following the labelling of the diagram, we have

B I 1 E = B 2 + θ 60 = B 2 + θ ( 1 ) \angle B{{I}_{1}}E=\frac{B}{2}+\theta \Rightarrow 60{}^\circ =\frac{B}{2}+\theta \ \ \ \ \ (1)

C I 2 F = C 2 + φ ( 2 ) \angle C{{I}_{2}}F=\frac{C}{2}+\varphi \ \ \ \ \ (2)

( 1 ) , ( 2 ) + C I 2 F + 60 = ( C 2 + φ ) + ( B 2 + θ ) = B 2 + C 2 + ( θ + φ ) = B 2 + C 2 + A 2 = 90 \begin{aligned} \left( 1 \right),\left( 2 \right)\overset{+}{\mathop{\Rightarrow }}\,\angle C{{I}_{2}}F+60{}^\circ & =\left( \frac{C}{2}+\varphi \right)+\left( \frac{B}{2}+\theta \right) \\ & =\frac{B}{2}+\frac{C}{2}+\left( \theta +\varphi \right) \\ & =\frac{B}{2}+\frac{C}{2}+\frac{A}{2} \\ & =90{}^\circ \\ \end{aligned} Hence,

C I 2 F = 90 60 = 30 \angle C{{I}_{2}}F=90{}^\circ -60{}^\circ =\boxed{30{}^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...