Divisibility problem

Find the largest integer n n such that 3 n 3^n divides ( 10 0 2 9 9 2 ) ( 9 9 2 9 8 2 ) ( 9 8 2 9 7 2 ) ( 2 2 1 2 ) (100^2-99^2)(99^2-98^2)(98^2-97^2)\dots(2^2-1^2)

51 53 47 49

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Barack Clinton
Feb 22, 2015

( 10 0 2 9 9 2 ) ( 9 9 2 9 8 2 ) ( 3 2 2 2 ) ( 2 1 1 2 ) = 199 197 5 3 (100^2-99^2)(99^2-98^2)\dots(3^2-2^2)(2^1-1^2)=199\cdot197\cdot\dots\cdot5\cdot3

Which is equal to 199 ! 2 4 6 198 \frac{199!}{2\cdot4\cdot6\dots\cdot198}

First find the powers of 3 in the numerator;

199 3 + 199 9 + 199 27 + 199 81 = 66 + 22 + 7 + 2 = 97 \left\lfloor\frac{199}{3}\right\rfloor+\left\lfloor\frac{199}{9}\right\rfloor+\left\lfloor\frac{199}{27}\right\rfloor+\left\lfloor\frac{199}{81}\right\rfloor=66+22+7+2=97

Now find the powers of 3 in the denominator;

Write the denominator as

2 4 6 198 = 2 99 ( 1 2 3 99 ) 2\cdot4\cdot6\dots\cdot198=2^{99}(1\cdot2\cdot3\dots\cdot99)

and then, the same procedure

99 3 + 99 9 + 99 27 + 99 81 = 33 + 11 + 3 + 1 = 48 \left\lfloor\frac{99}{3}\right\rfloor+\left\lfloor\frac{99}{9}\right\rfloor+\left\lfloor\frac{99}{27}\right\rfloor+\left\lfloor\frac{99}{81}\right\rfloor=33+11+3+1=48

Therefore the difference 97 48 = 49 97-48=49 is the largest n n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...