Remainder

1 5 23 + 2 3 23 \large {15^{23} + 23^{23} }

Find the remainder when the above expression is divided by 19.

3 15 18 10 0 7 1 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 22, 2016

For odd integer n n , we have x n + y n = ( x + y ) ( x n 1 x n 2 y + x n 3 y 2 . . . + y n 1 ) x^n+y^n = (x+y)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 - ... + y^{n-1}) . Therefore,

1 5 23 + 2 3 23 = ( 15 + 23 ) ( 1 5 22 1 5 21 23 + 1 5 20 2 3 2 . . . + 2 3 22 ) = 38 ( 1 5 22 1 5 21 23 + 1 5 20 2 3 2 . . . + 2 3 22 ) \begin{aligned} 15^{23} + 23^{23} & = (15+23)(15^{22} - 15^{21}23 + 15^{20}23^2 - ... +23^{22}) \\ & = {\color{#3D99F6}38}(15^{22} - 15^{21}23 + 15^{20}23^2 - ... +23^{22}) \end{aligned}

Since 38 \color{#3D99F6}38 is divisible by 19, 1 5 23 + 2 3 23 15^{23} + 23^{23} is divisible by 19, therefore the remainder is 0 \boxed{0} .

exactly sir , same conept..

Rakshit Joshi - 4 years, 6 months ago
Saharsh Rathi
Nov 27, 2016

15 23 + 23 23 ( 4 ) 23 + ( 4 ) 23 0 ( m o d 19 ) { 15 }^{ 23 }+{ 23 }^{ 23 }\quad \equiv { \quad (-4) }^{ 23 }+{ (4) }^{ 23 }\quad \equiv \quad 0\quad (mod\quad 19)

15²³+23²³=(15+23)²³ mod(19) =38mod19 =0

I Gede Arya Raditya Parameswara - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...