Divisibility test 3

1 5 23 + 2 3 123 \large{ 15^{23} + 23^{123}}

Find the remainder when the above expression is divided by 19.

0 13 10 12 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 23, 2016

Since 15, 23 and 19 are coprime integers, we can apply Euler's theorem as follows:

1 5 23 + 2 3 123 1 5 23 mod ϕ ( 19 ) + 2 3 123 mod ϕ ( 19 ) Euler’s totient function ϕ ( 19 ) = 18 1 5 5 + 2 3 15 (mod 19) ( 19 4 ) 5 + ( 19 + 4 ) 15 (mod 19) ( 4 ) 5 + 4 15 (mod 19) ( 16 ) ( 16 ) ( 4 ) + 2 30 mod 18 (mod 19) ( 3 ) ( 3 ) ( 4 ) + 2 12 (mod 19) 36 + 1 6 3 (mod 19) 2 + ( 3 ) 3 (mod 19) 2 27 (mod 19) 25 (mod 19) 13 (mod 19) \begin{aligned} 15^{23} + 23^{123} & \equiv 15^{\color{#3D99F6}23 \text{ mod }\phi(19)}+23^{\color{#3D99F6}123 \text{ mod }\phi(19)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(19) = 18 \\ & \equiv 15^5+23^{15} \text{ (mod 19)} \\ & \equiv (19-4)^5+(19+4)^{15} \text{ (mod 19)} \\ & \equiv (-4)^5+4^{15} \text{ (mod 19)} \\ & \equiv (16)(16)(-4)+2^{30 \text{ mod }18} \text{ (mod 19)} \\ & \equiv (-3)(-3)(-4)+2^{12} \text{ (mod 19)} \\ & \equiv -36+16^3 \text{ (mod 19)} \\ & \equiv 2+(-3)^3 \text{ (mod 19)} \\ & \equiv 2-27 \text{ (mod 19)} \\ & \equiv -25 \text{ (mod 19)} \\ & \equiv \boxed{13} \text{ (mod 19)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...