Divisible by 1599

Is the number below divisible by 1599 1599 ? 3400 ! ( 1700 ! ) 2 \dfrac{3400!}{(1700!)^2}

No, it is not divisible by 1599 Yes, it is divisible by 1599

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

. .
Mar 27, 2021

Since ( 1700 ! ) 2 ( 1700! ) ^ { 2 } is much larger than 3400 ! 3400! , and using the Sterling's law , we get 1700! = 2 × π × 1700 ( 1700 e ) 1700 = 3400 π ( 170 0 1700 e 1700 ) \displaystyle \sqrt { 2 \times \pi \times 1700 } \left ( \frac { 1700 } { e } \right ) ^ { 1700 } = \sqrt { 3400\pi } \left ( \frac { 1700 ^ { 1700 } } { e ^ { 1700 } } \right ) , and 3400! = 6800 π ( 340 0 3400 e 3400 ) \displaystyle \sqrt { 6800\pi } \left ( \frac { 3400 ^ { 3400 } } { e ^ { 3400 } } \right ) .

Then, ( 3400 π ( 170 0 1700 e 1700 ) ) 2 > 6800 π ( 340 0 3400 e 3400 ) \displaystyle \left ( \sqrt { 3400\pi } \left ( \frac { 1700 ^ { 1700 } } { e ^ { 1700 } } \right ) \right ) ^ { 2 } > \sqrt { 6800\pi } \left ( \frac { 3400 ^ { 3400 } } { e ^ { 3400 } } \right ) .

So, 3400 ! ( 1700 ! ) 2 \displaystyle \frac { 3400! } { \left ( 1700! \right ) ^ { 2 } } is not divisible(undivisible) by 1599.

3400 π ( 170 0 2890000 e 2890000 ) > 6800 π ( 340 0 3400 e 3400 ) \because \displaystyle 3400\pi \left ( \frac { 1700 ^ { 2890000 } } { e ^ { 2890000 } } \right ) > \sqrt { 6800\pi } \left ( \frac { 3400 ^ { 3400 } } { e ^ { 3400 } } \right ) .

. . - 2 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...