Divisible by?

For any odd natural number n n , ( 3 ) 4 n + ( 2 ) 4 n \left(\sqrt{3}\right)^{4n} + \left(\sqrt{2}\right)^{4n} is always divisible by...

17 5 13 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marco Brezzi
Aug 12, 2017

( 3 ) 4 n + ( 2 ) 4 n = 9 n + 4 n (\sqrt{3})^{4n}+(\sqrt{2})^{4n}=9^n+4^n

Claim: \textbf{Claim:}

a + b a n + b n a+b|a^n+b^n when n n is odd

Proof: \textbf{Proof:}

Since n n is odd, write n = 2 k + 1 k N n=2k+1\quad k\in\mathbb{N}

a n + b n = a 2 k + 1 + b 2 k + 1 = ( a + b ) ( a 2 k a 2 k 1 b + a 2 k 2 b 2 a b 2 k 1 + b 2 k ) \begin{aligned} a^n+b^n &=a^{2k+1}+b^{2k+1}\\ &=(a+b)(a^{2k}-a^{2k-1}b+a^{2k-2}b^2-\ldots -ab^{2k-1}+b^{2k}) \end{aligned}

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c \phantom{cccccccccccccccccccccccccccccccccccccccccccccc}\square

In this case a = 9 a=9 and b = 4 b=4

9 + 4 9 n + 4 n 9+4|9^n+4^n

13 9 n + 4 n \Longrightarrow \boxed{13}|9^n+4^n

Very good solution indeed!! :)

Ojasee Duble - 3 years, 10 months ago
Chew-Seong Cheong
Aug 12, 2017

( 3 ) 4 n + ( 2 ) 4 n = 9 n + 4 n Let n = 2 m + 1 = ( 9 + 4 ) ( 9 2 m 9 2 m 1 4 + 9 2 m 2 4 2 + 4 2 m ) = 13 ( 9 2 m 9 2 m 1 4 + 9 2 m 2 4 2 + 4 2 m ) \begin{aligned} \left(\sqrt 3\right)^{4n} + \left(\sqrt 2\right)^{4n} & = 9^{\color{#3D99F6}n} + 4^{\color{#3D99F6}n} & \small \color{#3D99F6} \text{Let }n = 2m+1 \\ & = (9+4)\left(9^{2m} - 9^{2m-1}\cdot 4 + 9^{2m-2}\cdot 4^2 - \cdots + 4^{2m} \right) \\ & = {\color{#3D99F6}13}\left(9^{2m} - 9^{2m-1}\cdot 4 + 9^{2m-2}\cdot 4^2 - \cdots + 4^{2m} \right) \end{aligned}

Therefore, it is always divisible by 13 \boxed{13} .

why did you assume n = 2m + 1?

Ojasee Duble - 3 years, 10 months ago

Log in to reply

The problem states that n n is odd

Marco Brezzi - 3 years, 10 months ago

Log in to reply

Oh Okay.. got that.

Ojasee Duble - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...