Six-digit split decision

Find the largest six-digit natural number a b c d e f \overline{abcdef} ( a , d 0 (a,d\neq 0 ) that satisfies: ( a b c × d e f ) a b c d e f (\overline{abc}\times \overline{def}) \mid \overline{abcdef}

Details and Assumptions

  • In some countries this problem can be written as a b c d e f ( a b c × d e f ) \overline{abcdef} ⋮ (\overline{abc}\times \overline{def}) .

  • a b c \overline{abc} and d e f \overline{def} do not have to be distinct numbers.

  • a , b , c , d , e , f a,b,c,d,e,f do not have to be distinct digits.


The answer is 167334.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

In my country this problem is written as a b c d e f ( a b c × d e f ) \overline{abcdef} ⋮ (\overline{abc}\times \overline{def}) so here is my solution: a b c d e f ( a b c × d e f ) { a b c d e f a b c a b c d e f d e f \overline{abcdef} ⋮ (\overline{abc}\times \overline{def})\Rightarrow {\begin{cases}\overline{abcdef}⋮\overline{abc}\\\overline{abcdef}⋮\overline{def}\end{cases}}

{ ( a b c 000 + d e f ) a b c ( a b c 000 + d e f ) d e f \Rightarrow {\begin{cases}(\overline{abc000}+\overline{def})⋮\overline{abc}\\(\overline{abc000}+\overline{def})⋮\overline{def}\end{cases}} { d e f a b c a b c 000 d e f \Rightarrow {\begin{cases}\overline{def}⋮\overline{abc}\\\overline{abc000}⋮\overline{def}\end{cases}} . This is because a b c 000 ÷ a b c = 1000 \overline{abc000}\div \overline{abc}=1000 and d e f ÷ d e f = 1 \overline{def}\div \overline{def}=1 .

Because d e f a b c \overline{def}⋮\overline{abc} , let d e f = k × a b c \overline{def}=k \times \overline{abc} ( k k is a positive integer). We know that a b c 100 \overline{abc}\ge 100 and d e f 999 \overline{def}\le 999 , this implies that k < 10 k<10 or k 9 k \le 9 .

Because a b c 000 d e f N \frac{\overline{abc000}}{\overline{def}}\in N , then a b c × 1000 k × a b c N \frac{\overline{abc}\times 1000}{k \times \overline{abc}}\in N or 1000 k N \frac{1000}{k}\in N 1000 k \Rightarrow 1000 ⋮k . However k 9 k \le 9 as stated above, we have k { 1 ; 2 ; 4 ; 5 ; 8 } k\in \left\{1;2;4;5;8\right\} satisfies both condition. There are three cases:

Case 1: k = 1 k=1 or d e f = a b c \overline{def}=\overline{abc} . We know that a b c = 100 a + 10 b + c \overline{abc}=100a+10b+c and same goes for d e f \overline{def} .

We have a b c d e f = a b c 000 + a b c = 100000 a + 10000 b + 1000 c + 100 a + 10 b + c = 1001 ( 100 a + 10 b + c ) \overline{abcdef}=\overline{abc000}+\overline{abc}=100000a+10000b+1000c+100a+10b+c=1001(100a+10b+c) .

Also note that a b c × d e f = a b c × a b c = ( 100 a + 10 b + c ) 2 \overline{abc}\times \overline{def}=\overline{abc}\times \overline{abc}=\left(100a+10b+c\right)^2 .

Because a b c d e f a b c × d e f N \frac{\overline{abcdef}}{\overline{abc}\times \overline{def}}\in N (implied from the problem), 1001 ( 100 a + 10 b + c ) ( 100 a + 10 b + c ) 2 N \frac{1001(100a+10b+c)}{(100a+10b+c)^2}\in N or 1001 100 a + 10 b + c N \frac{1001}{100a+10b+c}\in N , then 1001 a b c 1001⋮\overline{abc} . The only three-digit divisor of 1001 is 143, satisfies a b c 100 \overline{abc}\ge 100 , so a b c = 143 \overline{abc}=143 .

So the first six-digit number that satisfies all the conditions is 143143 (correct because 143143 ( 143 × 143 ) 143143⋮(143 \times 143) ), but we will continue to see if there are more numbers.

Case 2: k = 2 k=2 or d e f = 2 × a b c \overline{def}=2 \times \overline{abc} .

We have a b c d e f = a b c 000 + d e f = a b c × 1000 + 2 × a b c = 1002 × a b c \overline{abcdef}=\overline{abc000}+\overline{def}=\overline{abc}\times 1000 + 2 \times \overline{abc}=1002\times \overline{abc} .

Also note that a b c × d e f = a b c × 2 × a b c = ( a b c ) 2 × 2 \overline{abc}\times \overline{def}=\overline{abc}\times 2 \times \overline{abc}=(\overline{abc})^2 \times 2 .

Because a b c d e f a b c × d e f N \frac{\overline{abcdef}}{\overline{abc}\times \overline{def}}\in N , 1002 × a b c ( a b c ) 2 × 2 N \frac{1002\times \overline{abc}}{(\overline{abc})^2 \times 2}\in N , or 501 a b c N \frac{501}{\overline{abc}}\in N , then 501 a b c 501⋮\overline{abc} . There are two three-digit divisors of 501, they are 167 and 501, but if a b c = 501 \overline{abc}=501 then d e f = 1002 \overline{def}=1002 , this is incorrect. However if a b c = 167 \overline{abc}=167 then we know that the result is 167334 , this matches the condition from the problem, so we move on to the final case.

Case 3: k = 5 k=5 or d e f = 5 × a b c \overline{def}=5 \times \overline{abc} .

We have a b c d e f = a b c 000 + d e f = a b c × 1000 + 5 × a b c = 1005 × a b c \overline{abcdef}=\overline{abc000}+\overline{def}=\overline{abc}\times 1000 + 5 \times \overline{abc}=1005\times \overline{abc} .

Also note that a b c × d e f = a b c × 5 × a b c = ( a b c ) 2 × 5 \overline{abc}\times \overline{def}=\overline{abc}\times 5 \times \overline{abc}=(\overline{abc})^2 \times 5 . Because a b c d e f a b c × d e f N \frac{\overline{abcdef}}{\overline{abc}\times \overline{def}}\in N , 1005 × a b c ( a b c ) 2 × 5 N \frac{1005\times \overline{abc}}{(\overline{abc})^2 \times 5}\in N , or 201 a b c N \frac{201}{\overline{abc}}\in N , then 201 a b c 201⋮\overline{abc} . The only three-digit divisor of 201 is 201, this will make d e f = 5 × a b c = 201 × 5 = 1005 \overline{def}=5 \times \overline{abc}=201 \times 5 =1005 , which is not a three-digit number. So case 3 has no solutions.

EDIT: As stated above, 1000 k 1000⋮k and k 9 k \le 9 , but I forgot to mention two more cases of k k , in this case k = 4 k=4 and k = 8 k=8 will make it 5 cases total. However, both k = 4 k=4 and k = 8 k=8 has no solutions (you can try to prove it yourself, similar to case 3), so luckily the result doesn't change.

We conclude that the largest six-digit number satisfies the condition as stated in the problem is 167334 \boxed{167334} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...