Divisor Generating Function?

It is known that n = 1 σ 3 ( n ) n 2 e 2 π n = G a b π c d \large \displaystyle \sum _{n=1}^{\infty }\dfrac{\sigma_3(n)}{n^2}e^{-2\pi n}=\dfrac{G}{a} - \dfrac{b\pi^c}{d}

where G G is denotes the Catalan's constant

G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 , \displaystyle G=\sum _{n=0}^{ \infty }\frac{\left(-1\right)^n}{\left(2n+1\right)^2},

σ 3 ( n ) \sigma_3(n) is defined to be the divisor function

σ 3 ( n ) = d n d 3 , \displaystyle σ_3(n)=\sum_{d\mid n}d^3,

And a , b , c a,b,c and d d are positive integers , with b , d b,d coprime. Find a + b + c + d a+b+c+d .


Inspiration .


The answer is 739.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 31, 2016

Giving the details of your comment to my problem... Since n = 1 σ 3 ( n ) n 2 e 2 π n = n = 1 e 2 π n n 2 d n d 3 = n = 1 n e 2 π n d n 1 d 3 = d = 1 1 d 3 ( n = 1 ( n d ) e 2 π n d ) = d = 1 1 d 2 e 2 π d ( 1 e 2 π d ) 2 = 1 4 d = 1 c o s e c h 2 π d d 2 = 1 4 d = 1 coth 2 π d d 2 1 24 π 2 = 1 4 ( 2 3 G + 19 180 π 2 ) 1 24 π 2 = 1 6 G 11 720 π 2 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{\sigma_3(n)}{n^2}e^{-2\pi n} & = & \displaystyle \sum_{n=1}^\infty \frac{e^{-2\pi n}}{n^2} \sum_{d|n} d^3 \; = \; \sum_{n=1}^\infty ne^{-2\pi n} \sum_{d|n} \frac{1}{d^3} \\ & = & \displaystyle \sum_{d=1}^\infty \frac{1}{d^3} \left(\sum_{n=1}^\infty (nd) e^{-2\pi nd}\right) \; = \; \sum_{d=1}^\infty \frac{1}{d^2} \frac{e^{-2\pi d}}{(1 - e^{-2\pi d})^2} \\ & = & \displaystyle \tfrac14\sum_{d=1}^\infty \frac{\mathrm{cosech}^2 \pi d}{d^2} \; = \; \tfrac14\sum_{d=1}^\infty \frac{\coth^2\pi d}{d^2} - \tfrac{1}{24}\pi^2 \\ & = & \displaystyle \tfrac14\left(\tfrac23G + \tfrac{19}{180}\pi^2\right) - \tfrac{1}{24}\pi^2 \; = \; \tfrac16G - \tfrac{11}{720}\pi^2 \end{array} using the answer to my problem, the result is 6 + 11 + 2 + 720 = 739 6 + 11 + 2 + 720 = \boxed{739} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...