Divisor of factorial number

What is the remainder when the number of divisors of ( 10 ! ) 10 ! (10!)^{10!} is divided by 210?

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

2 7 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Dec 23, 2016

The first step is to determine the number of divisors of 10 ! 10! . Then, determine the number of divisors of the original number m o d 210 \bmod\, 210 .


Recall that De Polignac's formula is

s p ( n ) = j = 1 log p ( n ) n p j s_p(n) = \sum\limits_{j=1}^{\lfloor \log_p(n) \rfloor} \left\lfloor \dfrac{n}{p^j}\right\rfloor where p p is a positive prime integer.

Let n = 10 n = 10 . Since there are 4 4 positive prime integers between 2 2 and 10 10 , namely 2 , 3 , 5 2,3,5 and 7 7 ,

  • If p 1 = 2 p_1 = 2 , then s p 1 ( n ) = 8 s_{p_1}(n) = 8 ;
  • If p 2 = 3 p_2 = 3 , then s p 2 ( n ) = 4 s_{p_2}(n) = 4 ;
  • If p 3 = 5 p_3 = 5 , then s p 3 ( n ) = 2 s_{p_3}(n) = 2 ;
  • If p 4 = 7 p_4 = 7 , then s p 4 ( n ) = 1 s_{p_4}(n) = 1 ;

which illustrates the sequence of decreasing number of divisors for increasing prime numbers. We can then express ( 10 ! ) 10 ! (10!)^{10!} as ( 10 ! ) 10 ! = ( 2 8 3 4 5 2 7 ) 10 ! = 2 8 10 ! 3 4 10 ! 5 2 10 ! 7 10 ! \left(10!\right)^{10!} = \left(2^8 \cdot 3^4 \cdot 5^2 \cdot 7\right)^{10!} = 2^{8 \cdot 10!} \cdot 3^{4 \cdot 10!} \cdot 5^{2 \cdot 10!} \cdot 7^{10!}

Looking at the exponents of the divisors, we see that the total number of divisors is ( 8 10 ! + 1 ) ( 4 10 ! + 1 ) ( 2 10 ! + 1 ) ( 10 ! + 1 ) \left(8 \cdot 10! + 1\right)\left(4 \cdot 10! + 1\right)\left(2 \cdot 10! + 1\right)\left(\cdot 10! + 1\right) Notice that since 210 = 2 3 5 7 210 = 2 \cdot 3 \cdot 5 \cdot 7 and 10 ! = 2 8 3 4 5 2 7 10! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 , this shows that 210 10 ! 210 | 10! . In that case, 10 ! 0 m o d 210 10! \equiv 0 \bmod 210 . Thus, ( 8 10 ! + 1 ) ( 4 10 ! + 1 ) ( 2 10 ! + 1 ) ( 10 ! + 1 ) 1 m o d 210 \left(8 \cdot 10! + 1\right)\left(4 \cdot 10! + 1\right)\left(2 \cdot 10! + 1\right)\left(\cdot 10! + 1\right) \equiv \boxed{1 \bmod 210}

Ak Mahin
Dec 23, 2016

Notice, ( 10 ! ) 10 ! (10!)^{10!} = ( 1 2 3 4 5 6 7 8 9 10 ) 10 ! (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10)^{10!} =( 2 8 3 4 5 2 7 ) 10 ! 2^{8}\cdot 3^{4}\cdot 5^{2}\cdot 7)^{10!} = 2 8 10 ! 3 4 10 ! 5 2 10 ! 7 10 ! 2^{8\cdot 10!}\cdot 3^{4\cdot 10!}\cdot 5^{2\cdot 10!}\cdot 7^{10!} .So,number of divisor of ( 10 ! ) 10 ! (10!)^{10!} is = ( 8 10 ! + 1 ) (8 \cdot 10!+1) \cdot ( 4 10 ! + 1 ) (4 \cdot 10!+1) \cdot ( 2 10 ! + 1 ) (2 \cdot 10!+1) \cdot ( 10 ! + 1 ) (10!+1) . Now look, 210 8 10 ! 210 | 8\cdot 10! ;so, ( 8 10 ! + 1 ) (8\cdot 10!+1) \equiv 1 ( m o d 210 ) \pmod{210} ------------------- ( 1 ) (1) ; 210 4 10 ! 210 | 4\cdot 10! ;so, ( 4 10 ! + 1 ) (4\cdot 10!+1) \equiv 1 ( m o d 210 ) \pmod{210} ------------------- ( 2 ) (2) ; 210 2 10 ! 210 | 2\cdot 10! ;so, ( 2 10 ! + 1 ) (2\cdot 10!+1) \equiv 1 ( m o d 210 ) \pmod{210} ------------------- ( 3 ) (3) ; 210 10 ! 210 | 10! ;so, ( 10 ! + 1 ) (10!+1) \equiv 1 ( m o d 210 ) \pmod{210} ------------------- ( 4 ) (4) ; ( 1 ) (1) , ( 2 ) (2) , ( 3 ) (3) & ( 4 ) (4) implies, ( 8 10 ! + 1 ) ( 4 10 ! + 1 ) ( 2 10 ! + 1 ) ( 10 ! + 1 ) (8\cdot 10!+1)\cdot (4\cdot 10!+1)\cdot (2\cdot 10!+1)\cdot (10!+1) \equiv 1 ( m o d 210 ) \pmod{210} . So,the desired ans is 1 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...