Divisor Phi Summation

d 2016 φ ( d ) = ? \large \sum _{d | 2016}{\varphi ( d ) } = \, ?

Find the sum of the values of Euler's totient function φ ( d ) \varphi (d) for all positive divisors of 2016.


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Esp Ter
Oct 18, 2016

2016 = 2 5 3 2 7 2016 = 2^5 \cdot 3^2 \cdot 7 . Since φ \varphi is a multiplicative function, the answer is simply

( i = 0 5 φ ( 2 i ) ) ( i = 0 2 φ ( 3 i ) ) ( i = 0 1 φ ( 7 i ) ) = 2016 \left( \sum _{ i=0 }^{ 5 }{ \varphi \left( { 2 }^{ i } \right) } \right) \left( \sum _{ i=0 }^{ 2 }{ \varphi \left( { 3 }^{ i } \right) } \right) \left( \sum _{ i=0 }^{ 1 }{ \varphi \left( { 7 }^{ i } \right) } \right) = 2016

By noting that φ ( p k ) = p k p k 1 \varphi\left(p^k\right) = p^k - p^{k-1} ,

i = 0 n φ ( p i ) = p n \sum _{ i=0 }^{ n }{ \varphi \left( { p }^{ i } \right) ={ p }^{ n } }

It can be generalized that

d k φ ( d ) = k \sum _{d | k}{\varphi \left( d \right) } = k

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...