Divisors

Number Number of positive divisors 1 1 2 × 2 3 3 × 3 × 3 4 4 × 4 × 4 × 4 9 \begin{array} { | c | c | } \hline \text{Number} & \text{ Number of positive divisors} \\ \hline 1 & 1 \\ 2\times2 & 3 \\ 3\times3\times3 & 4 \\ 4\times4\times4\times4 & 9 \\ \hline \end{array}

True or False?

As n n increases, the number of positive divisors of n × n × × n n times \underbrace{n\times n\times \cdots \times n}_{n\text{ times}} increases.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jul 22, 2017

Relevant wiki: Number of Factors

Let d ( x ) d(x) be the number of divisors of a number x x . You only need to look one more instance further to see that d ( n n ) d\left(n^n\right) is not a strictly increasing function:

d ( 5 5 ) = 6 < 9 = d ( 4 4 ) \displaystyle \begin{aligned} d\left(5^5\right) = 6 < 9 = d\left(4^4\right) \end{aligned}

Recall that the number of divisors of a number N N with prime factorization

p 1 q 1 p 2 q 2 p 3 q 3 p k q k \displaystyle \begin{aligned} p_1^{{\color{#3D99F6}{q_1}}}p_2^{{\color{#3D99F6}{q_2}}}p_3^{{\color{#3D99F6}{q_3}}}\cdots p_k^{{\color{#3D99F6}{q_k}}} \end{aligned}

is equal to ( q 1 + 1 ) ( q 2 + 1 ) ( q 3 + 1 ) ( q k + 1 ) \left({\color{#3D99F6}{q_1}} + 1\right)\left({\color{#3D99F6}{q_2}} + 1\right)\left({\color{#3D99F6}{q_3}} + 1\right)\cdots \left({\color{#3D99F6}{q_k}} + 1\right) .

For any prime p p raised to itself p p p^p , it will have p + 1 p + 1 divisors, so for increasing values of p p , d ( p p ) d\left(p^p\right) is an increasing function. Analogously, it is elementary that y = x + 1 y = x + 1 is strictly increasing for all x x (although their domains are technically different: one continuous, the other discrete).

Number Number of divisors 2 2 2 + 1 = 3 3 3 3 + 1 = 4 5 5 5 + 1 = 6 7 7 7 + 1 = 8 1 1 11 11 + 1 = 12 1 3 13 13 + 1 = 14 1 7 17 17 + 1 = 18 \displaystyle \begin{array} {|c|c|} \hline \text{Number} & \text{Number of divisors}\\\hline 2^{\color{#3D99F6}{2}} & {\color{#3D99F6}{2}} + 1 = 3\\\hline 3^{\color{#3D99F6}{3}} & {\color{#3D99F6}{3}} + 1 = 4\\\hline 5^{\color{#3D99F6}{5}} & {\color{#3D99F6}{5}} + 1 = 6\\\hline 7^{\color{#3D99F6}{7}} & {\color{#3D99F6}{7}} + 1 = 8\\\hline 11^{{\color{#3D99F6}{11}}} & {\color{#3D99F6}{11}} + 1 = 12\\\hline 13^{{\color{#3D99F6}{13}}} & {\color{#3D99F6}{13}} + 1 = 14\\\hline 17^{{\color{#3D99F6}{17}}} & {\color{#3D99F6}{17}} + 1 = 18\\\hline\end{array}

This is not the case, however, for numbers n n n^n where n n is composite.

Take, for instance, 4 4 4^4 :

4 4 = 2 8 d ( 4 4 ) = 8 + 1 = 9 \displaystyle \begin{aligned} 4^4 & = 2^8 \\ \implies d\left(4^4\right) & = 8 + 1 = 9 \end{aligned}

Now look at the rest of the numbers n n n^n for composite n n :

Number Number of divisors 4 4 = 2 8 8 + 1 = 9 6 6 = 2 6 3 6 ( 6 + 1 ) ( 6 + 1 ) = 49 8 8 = 2 24 24 + 1 = 25 9 9 = 3 18 18 + 1 = 19 1 0 10 = 2 10 5 10 ( 10 + 1 ) ( 10 + 1 ) = 121 1 2 12 = 2 24 3 12 ( 24 + 1 ) ( 12 + 1 ) = 325 1 4 14 = 2 14 7 14 ( 14 + 1 ) ( 14 + 1 ) = 225 \displaystyle \begin{array} {|c|c|} \hline \text{Number} & \text{Number of divisors}\\\hline 4^4 = 2^{\color{#3D99F6}{8}} & {\color{#3D99F6}{8}} + 1 = 9\\\hline 6^6 = 2^{\color{#3D99F6}{6}} \cdot 3^{\color{#20A900}{6}} & ({\color{#3D99F6}{6}} + 1)({\color{#20A900}{6}} + 1) = 49\\\hline 8^8 = 2^{{\color{#3D99F6}{24}}} & {\color{#3D99F6}{24}} + 1 = 25\\\hline 9^9 = 3^{{\color{#3D99F6}{18}}} & {\color{#3D99F6}{18}} + 1 = 19\\\hline 10^{10} = 2^{{\color{#3D99F6}{10}}} \cdot 5^{{\color{#20A900}{10}}} & ({\color{#3D99F6}{10}} + 1)({\color{#20A900}{10}} + 1) = 121\\\hline 12^{12} = 2^{{\color{#3D99F6}{24}}} \cdot 3^{{\color{#20A900}{12}}} & ({\color{#3D99F6}{24}} + 1)({\color{#20A900}{12}} + 1) = 325\\\hline 14^{14} = 2^{{\color{#3D99F6}{14}}} \cdot 7^{{\color{#20A900}{14}}} & ({\color{#3D99F6}{14}} + 1)({\color{#20A900}{14}} + 1) = 225\\\hline \end{array}

We conclude that although d ( p p ) d(p^p) is strictly increasing for all primes p p , d ( n n ) d(n^n) is not a strictly increasing function for positive integers n n .

The question doesn't say that n n must be a positive integer

MegaMoh . - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...