Divisors and polynomials

Let N N be a positive integer which has exactly n n positive divisors, d 1 , d 2 , d 3 , . . . . . . . . . . d n d_{1}, d_{2}, d_{3}, ..........d_{n} . Consider two polynomials

f ( x ) = x n + a n 1 x n 1 + a n 2 x n 2 + . . . . . . . . . . . . . . + a 2 x 2 + a 1 x + a 0 f(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ..............+ a_{2}x^{2} + a_{1}x + a_{0}

g ( x ) = x n + b n 1 x n 1 + b n 2 x n 2 + . . . . . . . . . . . . . . + b 2 x 2 + b 1 x + b 0 g(x) = x^{n} + b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + ..............+ b_{2}x^{2} + b_{1}x + b_{0}

Roots of f ( x ) f(x) are d 1 , d 2 , d 3 , . . . . . . . . . . d n d_{1}, d_{2}, d_{3}, ..........d_{n} and roots of g ( x ) g(x) are 1 / d 1 , 1 / d 2 , 1 / d 3 , . . . . . . . . . . 1 / d n 1/d_{1}, 1/d_{2}, 1/d_{3}, ..........1/d_{n} .

Find the value of i = 0 n 1 \sum_{i=0}^{n-1} a i b i \frac{a_{i}}{b_{i}} .

N ( N n 1 ) N 1 \frac{N(N^{n} - 1)}{N - 1} N n 1 1 N 1 \frac{N^{n-1} - 1}{N - 1} N n 1 N 1 \frac{N^{n} - 1}{N - 1} N ( N n 1 1 ) N 1 \frac{N(N^{n-1} - 1)}{N - 1} N n + 1 1 N 1 \frac{N^{n+1} - 1}{N - 1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Jul 6, 2018

Let d 1 < d 2 < d 3 < . . . . . . . . . . < d n d_{1}<d_{2}<d_{3}< ..........<d_{n}

We can easily see that d 1 = N d n d_{1} = \frac{N}{d_{n}} , d 2 = N d n 1 d_{2} = \frac{N}{d_{n-1}} .........concluding that d k = N d n + 1 k d_{k} = \frac{N}{d_{n+1-k}}

From this, we can write the roots of g ( x ) g(x) as d 1 / N , d 2 / N , d 3 / N . . . . . . . . . . d n / N d_{1}/N, d_{2}/N, d_{3}/N..........d_{n}/N .

Hence from this we derive that f ( N x ) f(Nx) has the roots same as g(x).

Hence g ( x ) = f ( N x ) N n g(x) = \frac{f(Nx)}{N^{n}} [make the coefficients of x n x^{n} as 1 1 ]

From this we get b i = a i N n i b_{i} = \frac{a_{i}}{N^{n-i}}

Hence required sum is i = 0 n 1 N n i \sum_{i=0}^{n-1} N^{n-i} = N ( N n 1 ) N 1 \frac{N(N^{n} - 1)}{N - 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...