Divisors of factorials III

How many positive integers n n exist that satisfy n ! = ( 2 a ) ( 3 b ) ( 5 c ) ( 7 d ) ( 1 1 2 ) ( 1 3 2 ) ( 17 ) ( 19 ) ( 23 ) n!=( 2^a)(3^b)(5^c)(7^d)(11^2)(13^2)(17)(19)(23) and a + b + c + d = 45 a+b+c+d=45 for some positive integers a a , b b , c c , and d d ?

Notation: ! ! denotes the factorial notation . For example: 8 ! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 8!=1\times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 23, 2019

In general, the largest power m m of a prime p p that divides n ! n! is given by m = k = 1 n p k \displaystyle m = \sum_{k=1}^\infty \left \lfloor \frac n{p^k} \right \rfloor . From n ! = ( 2 a ) ( 3 b ) ( 5 c ) ( 7 d ) ( 1 1 2 ) ( 1 3 2 ) ( 17 ) ( 19 ) ( 23 ) n! = (2^a)(3^b)(5^c)(7^d)(11^2)(13^2)(17)(19)(23) . the factor 1 3 2 13^2 tells us that n 26 n \ge 26 . Since the prime factor 29 is not present, n < 29 n < 29 . That is n n can only be 26, 27, and 28. Then we have:

a 26 + b 26 + c 26 + d 26 = k = 1 26 2 k + k = 1 26 3 k + k = 1 26 5 k + k = 1 26 7 k = 23 + 10 + 6 + 3 = 42 a 27 + b 27 + c 27 + d 27 = k = 1 27 2 k + k = 1 27 3 k + k = 1 27 5 k + k = 1 27 7 k = 23 + 13 + 6 + 3 = 45 a 28 + b 28 + c 28 + d 28 = k = 1 28 2 k + k = 1 28 3 k + k = 1 28 5 k + k = 1 28 7 k = 25 + 13 + 6 + 4 = 48 \begin{aligned} a_{26} + b_{26} + c_{26} + d_{26} & = \sum_{k=1}^\infty \left \lfloor \frac {26}{2^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {26}{3^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {26}{5^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {26}{7^k} \right \rfloor = 23 + 10 + 6 + 3 = 42 \\ a_{27} + b_{27} + c_{27} + d_{27} & = \sum_{k=1}^\infty \left \lfloor \frac {27}{2^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {27}{3^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {27}{5^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {27}{7^k} \right \rfloor = 23 + 13 + 6 + 3 = \boxed{45} \\ a_{28} + b_{28} + c_{28} + d_{28} & = \sum_{k=1}^\infty \left \lfloor \frac {28}{2^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {28}{3^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {28}{5^k} \right \rfloor + \sum_{k=1}^\infty \left \lfloor \frac {28}{7^k} \right \rfloor = 25 + 13 + 6 + 4 = 48 \end{aligned}

Therefore, there is only 1 \boxed 1 n n that satisfies the conditions.


Notation: \lfloor \cdot \rfloor denotes the floor function .

Thank you, nice solution.

Hana Wehbi - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...