Do it

Algebra Level 1

2 0 + 2 1 2 2 + 2 3 = ? \large \dfrac{2^0 + 2^{-1}}{2^{-2} + 2^{-3}} = \, ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Nihar Mahajan
Jan 13, 2016

2 0 + 2 1 2 2 + 2 3 = 2 2 ( 2 0 2 + 2 1 2 ) 2 2 + 2 3 = 2 2 ( 2 2 + 2 3 ) 2 2 + 2 3 = 2 2 = 4 \large \dfrac{2^0 + 2^{-1}}{2^{-2} + 2^{-3}} = \dfrac{2^2( \ 2^{0-2} + 2^{-1-2} \ )}{2^{-2} + 2^{-3}}=\dfrac{2^2( 2^{-2} + 2^{-3} )}{2^{-2} + 2^{-3}}= 2^2=\boxed{4}

Nice one mihar whats your age i did it the same

Adirta Puri - 5 years, 5 months ago
Gean Llego
Jan 13, 2016

We've done things manually.

Multiplying numerator and denominator by 2³, the expression becomes:

(2³+2²)/(2+1)=(8+4)/3=12/3=4, the simplest method I got

2 0 + 2 1 2 2 + 2 3 \ = 1 + 1 2 1 4 + 1 8 = 1 + 1 2 3 8 = 24 2 3 = 12 3 4 \begin{aligned} \frac{2^0+2^{-1}}{2^{-2}+2^{-3}}\ = \frac{1 + \frac{1}{2}}{ \frac{1}{4} + \frac{1}{8}} \\&= \frac{1+ \frac{1}{2}} {\frac{3}{8}} \\&= \frac{\frac{24}{2}}{3} \\& = \frac{12}{3}\\& \therefore \boxed{4} \end{aligned}

Abdul Hai
Jan 20, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...