Do it here!

Algebra Level 4

x 2 + 1 1 x 2 5 3 = x \large \sqrt{x^2+1} - \frac { 1} { \sqrt{x^2 - \frac 53} } = x

There is a unique solution of the form a b - \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 2 + 1 = x + 1 x 2 5 3 . S q u a r i n g a n d s i m p l i f y i n g , 0 = 1 x 2 5 3 1 + 2 x x 2 5 3 . 8 3 x 2 x 2 5 3 = 2 x . S q u a r i n g , x 4 16 3 x 2 + 64 9 x 2 5 3 = 4 x 2 , x 4 16 3 x 2 + 64 9 = 4 x 4 20 3 x 2 . S i m p l i f y i n g a n d s o l v i n g t h e q u a d r a t i c i n x 2 , 3 x 4 20 3 x 2 64 9 = 0. x 2 = 4 ± 28 18 . x 2 > 0 , x 2 = 16 9 . x = ± 4 3 . B u t x = 4 3 o n l y s a t i s f y t h e o r i g i n a l e q u a t i o n . \sqrt{x^2+1}=x+\dfrac1 {\sqrt{x^2-\frac 5 3}}. ~~~~~Squaring~and~simplifying,\\ 0=\dfrac1 {x^2-\frac 5 3} - 1+\dfrac{2x} {\sqrt{x^2-\frac 5 3}}.\\ \therefore~\dfrac{\frac8 3 - x^2} {\sqrt{x^2-\frac 5 3}}= 2x.~~~~~Squaring,\\ \dfrac{x^4 - \dfrac{16}3 x^2+\dfrac{64} 9}{x^2-\frac 5 3 }=4x^2,\\ \therefore~x^4 - \dfrac{16}3 x^2+\dfrac{64} 9=4x^4-\frac{20}3 x^2. \\ Simplifying~and ~solving~ the~ quadratic ~in~ x^2 , \\ 3x^4 - \frac{20}3 x^2 - \dfrac{64} 9=0. \\ x^2=\dfrac{4~\pm 28} {18}. \\ x^2>0,~\therefore~x^2=\dfrac{16} 9.\\ \implies~ x= \pm \frac 4 3.\\ But~~x= {\Large~~~\color{#D61F06}{ - \frac 4 3}}~only~satisfy ~the ~original~ equation.

x 2 + 1 1 x 2 5 3 = x Let u = x 2 1 3 u + 4 3 1 u 4 3 = u + 1 3 Multiply both sides by u 4 3 u 2 16 9 1 = u 2 u 4 9 Squaring both sides u 2 16 9 2 u 2 16 9 + 1 = u 2 u 4 9 Rearranging u 1 3 = 2 u 2 16 9 Multiply both sides by 3 3 u 1 = 2 9 u 2 16 Squaring both sides 9 u 2 6 u + 1 = 36 u 2 64 Rearranging 27 u 2 + 6 u 65 = 0 ( 9 u 13 ) ( 3 u + 5 ) = 0 \begin{aligned} \sqrt{x^2+1} - \frac 1{\sqrt{x^2-\frac 53}} & = x & \small \color{#3D99F6} \text{Let } u = x^2 - \frac 13 \\ \sqrt{u+\frac 43} - \frac 1{\sqrt{u-\frac 43}} & = \sqrt{u+\frac 13} & \small \color{#3D99F6} \text{Multiply both sides by } \sqrt{u - \frac 43} \\ \sqrt{u^2 - \frac {16}9} - 1 & = \sqrt{u^2-u - \frac 49} & \small \color{#3D99F6} \text{Squaring both sides} \\ u^2 - \frac {16}9 - 2 \sqrt{u^2 - \frac {16}9} + 1 & = u^2- u - \frac 49 & \small \color{#3D99F6} \text{Rearranging} \\ u - \frac 13 & = 2 \sqrt{u^2 - \frac {16}9} & \small \color{#3D99F6} \text{Multiply both sides by }3 \\ 3u - 1 & = 2 \sqrt{9u^2 - 16} & \small \color{#3D99F6} \text{Squaring both sides} \\ 9u^2 - 6u + 1 & = 36u^2 - 64 & \small \color{#3D99F6} \text{Rearranging} \\ 27u^2 + 6u - 65 & = 0 \\ (9u-13)(3u+5) & = 0 \end{aligned}

{ u = 13 9 x 2 = 13 9 + 1 3 = 16 9 x = { 4 3 solution not valid 4 3 solution valid u = 5 3 x 2 = 5 3 + 1 3 = 4 3 No real solution. \implies \begin{cases} u = \dfrac {13}9 & \implies x^2 = \dfrac {13}9 + \dfrac 13 = \dfrac {16}9 & \implies x = \begin{cases} \color{#D61F06} \frac 43 & \color{#D61F06} \small \text{ solution not valid} \\ \color{#3D99F6} - \frac 43 & \color{#3D99F6} \small \text{ solution valid} \end{cases} \\ u = - \dfrac 53 & \implies x^2 = - \dfrac 53 + \dfrac 13 = - \dfrac 43 & \small \color{#D61F06} \text{No real solution.} \end{cases}

Therefore a + b = 4 + 3 = 7 a+b=4+3 = \boxed 7 .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...