Just do it

Algebra Level 5

b + c b 2 + c 2 + 2 ( a b + b c + a c ) + a + c a 2 + c 2 + 2 ( a b + b c + a c ) + a + b a 2 + b 2 + 2 ( a b + b c + a c ) \frac{b+c}{b^2+c^2+2(ab+bc+ac)}+\frac{a+c}{a^2+c^2+2(ab+bc+ac)}+\frac{a+b}{a^2+b^2+2(ab+bc+ac)}

Given that a , b a,b and c c are positive reals satisfying a 2 b 2 + b 2 c 2 + a 2 c 2 666 a 2 b 2 c 2 a^2b^2+b^2c^2+a^2c^2\leq666a^2b^2c^2 . Let P P denote the maximum value of the expression above.

Find 10 P 10P , round to the nearest integer.

Part of the set


The answer is 112.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Jan 30, 2016

First, we simplify J to J = 1 2 a + b + c + 1 2 b + a + c + 1 2 c + a + b J=\frac{1}{2a+b+c}+\frac{1}{2b+a+c}+\frac{1}{2c+a+b} then, prove J 1 4 ( 1 a + 1 b + 1 c ) J\leq\frac{1}{4}\big(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\big) using AM-HM inequality

Then, using Cauchy - Schwartz inequality 1 4 ( 1 a + 1 b + 1 c ) 1 4 3 ( 1 a 2 + 1 b 2 + 1 c 2 ) \frac{1}{4}\bigg(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\bigg)\leq\frac{1}{4}\sqrt{3\bigg(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\bigg)} From the condition we get 1 a 2 + 1 b 2 + 1 c 2 666 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\leq666 J 3.666 4 = p 11.17 J\leq\frac{\sqrt{3.666}}{4}=p\approx11.17 10 p = 111.7 10p = 111.7 which is 112 when rounded to the nearest integer

Wow the same way!!

Department 8 - 5 years, 4 months ago

Log in to reply

Shit I thought we had to find greatest integer less than or equal to 10P ; thus answered 111.My mistake :P

Harsh Shrivastava - 5 years, 4 months ago

Can you please explain the second step, ​please?

Naman Singh - 5 years, 4 months ago

Log in to reply

We just applying AM-HM 1 2 a + b + c = 1 ( a + b ) + ( a + c ) 1 4 ( 1 a + c + 1 a + b ) \frac{1}{2a+b+c}=\frac{1}{(a+b)+(a+c)}\leq\frac{1}{4}(\frac{1}{a+c}+\frac{1}{a+b}) Similarly we have 1 2 b + a + c 1 4 ( 1 a + b + 1 b + c ) \frac{1}{2b+a+c}\leq\frac{1}{4}(\frac{1}{a+b}+\frac{1}{b+c}) and 1 2 c + a + b 1 4 ( 1 a + c + 1 b + c ) \frac{1}{2c+a+b}\leq\frac{1}{4}(\frac{1}{a+c}+\frac{1}{b+c})

Combining them and we get J 1 2 ( 1 a + b + 1 a + c + 1 b + c ) J\leq\frac{1}{2}(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}) Clearly see that 1 a + b 1 4 ( 1 a + 1 b ) \frac{1}{a+b}\leq\frac{1}{4}(\frac{1}{a}+\frac{1}{b}) Therefore J 1 4 ( 1 a + 1 b + 1 c ) J\leq\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})

P C - 5 years, 4 months ago

maximum is attained when a=b=c

Srikanth Tupurani - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...