If are natural numbers, then the above expression will always be divisible by:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know that 2 n will be even .Therefore 2 n + 1 will be odd .Let a 2 n + 1 be a k and similarly b 2 n + 1 = b k .Now a k + b k can be factorised as ( a + b ) ( a k − 1 − a k − 2 b + … + a b k − 2 − b k − 1 ) . [ k is odd. ] Therefore we have shown that a + b is a factor of a k + b k or a + b ∣ a 2 n + 1 + b 2 n + 1 .