A geometry problem by Nazmus sakib

Geometry Level 2

tan 1 1 2 + tan 1 1 3 = ? \large \tan^{-1} \frac {1}{2} + \tan^{-1} \frac{ 1}{3} = ?

π 2 \dfrac{\pi}{2} π 8 \dfrac{\pi}{8} π 10 \dfrac{\pi}{10} π 6 \dfrac{\pi}{6} π 4 \dfrac{\pi}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

θ = tan 1 1 2 + tan 1 1 3 tan θ = tan ( tan 1 1 2 + tan 1 1 3 ) = 1 2 + 1 3 1 1 2 × 1 3 = 1 θ = n π + π 4 where n is an integer. \begin{aligned} \theta & = \tan^{-1} \frac 12 + \tan^{-1} \frac 13 \\ \tan \theta & = \tan \left(\tan^{-1} \frac 12 + \tan^{-1} \frac 13\right) \\ & = \frac {\frac 12 + \frac 13}{1-\frac 12 \times \frac 13} = 1 \\ \implies \theta & = {\color{#3D99F6}n}\pi + \boxed{\dfrac \pi 4} & \small \color{#3D99F6} \text{where }n \text{ is an integer.} \end{aligned}

@Sakib Nazmus , you can just enter \tan for tan \tan . Similarly, \sin sin \sin , \cos cos \cos , \sinh sinh \sinh , \In ln \ln , \log log \log , \gcd gcd \gcd , \int \int , \sum \sum . When you are using \ [ \ ], don't need to use \dfrac just \frac will do also no need \displaystyle. When the operand is only one character. braces { } are unnecessary, for example, \frac 12 1 2 \frac 12 , \sin^2 sin 2 \sin^2 , a_1 a 1 a_1 .

Chew-Seong Cheong - 3 years, 9 months ago

Log in to reply

Sir, thanks for the information.

Nazmus sakib - 3 years, 9 months ago

Log in to reply

Put your mouse cursor on top of the formulas and you will see the LaTex codes. You can also click the pull-down menu ( \cdots ) at the right bottom corner of the problem and select Toggle LaTex to see the codes.

Chew-Seong Cheong - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...